(PQ4) Quantitative and multiplexed analysis of gene function in cancer in vivo
(PQ4)体内癌症基因功能的定量和多重分析
基本信息
- 批准号:10238887
- 负责人:
- 金额:$ 46.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultBar CodesBiological ModelsCRISPR/Cas technologyCancer Cell GrowthCancer ModelCell LineCellsClinicalConsumptionDNA Sequence AlterationDataDetectionDevelopmentEvolutionGene ExpressionGene Expression ProfilingGene SilencingGenerationsGenesGeneticGenetic DeterminismGenetically Engineered MouseGenome engineeringGenomicsGenotypeGoalsGrowthHumanIndividualInvestigationLentivirus VectorLung NeoplasmsMalignant NeoplasmsMalignant neoplasm of lungMapsMediatingMethodsModelingMouse StrainsMusMutationNeoplasmsPathogenesisPathway interactionsPharmaceutical PreparationsPopulationPositioning AttributeRecurrenceResearch PersonnelResistanceResolutionResourcesStatistical MethodsStructureSystemTimeTumor Suppressor GenesTumor Suppressor ProteinsValidationanalytical methodbasecancer carecancer cellcancer geneticscombinatorialcost effectivedriving forcegene functiongenetic analysisgenome editinggenome sequencingin vivoinnovationmRNA Expressionmathematical methodsmouse modelnovelprogramsresponsesingle-cell RNA sequencingtumortumor barcoding and sequencingtumor growthtumor initiationtumorigenesisvector
项目摘要
PROJECT SUMMARY
Genome sequencing has catalogued the somatic alterations in human cancers and identified many
putative driver genes. However, human cancers generally evolve through the sequential acquisition of multiple
genomic alterations and simply identifying recurrent genomic alterations does not necessarily reveal their
functional importance to cancer growth. Genetically engineered mouse models have become a mainstay for the
analysis of gene function in cancer in vivo, however the breadth of their utility is limited by the fact that they are
neither readily scalable nor sufficiently quantitative. To increase the scope and precision of in vivo cancer
modeling, we previously integrated conventional genetically-engineered mouse models, CRISPR/Cas9-based
somatic genome engineering, and quantitative genomics with mathematical approaches. We developed
methods to inactivate multiple genes in parallel in mouse models of lung cancer using pools of barcoded sgRNA-
containing lentiviral vectors. This tumor barcoding with sequencing (Tuba-seq) approach uncovers the size of
each tumor, enables the parallel investigation of multiple tumor genotypes in individual mice, and allows the
generation of large-scale maps of gene function within autochthonous cancer models. Our preliminary data and
novel genetic systems, as well as our dedicated and collaborative team of investigators with expertise in cancer
genetics, mouse models, genome-editing, clinical cancer care, and quantitative modeling make us uniquely
positioned to conduct these studies. In this proposal, we will extend Tuba-seq to quantify the effect of
combinatorial genetic alterations through the development and validation of a platform for the rapid and
quantitative analysis of interactions between genetic alterations on tumor growth in vivo. To enable multiplexed
and quantitative analysis of the impact of temporally controlled genomic alterations on cancer cell growth in vivo,
we will also develop a system for inducible genome editing in established lung tumors. Finally, we will develop
novel in vivo approaches to comprehensively and broadly uncover the gene expression programs in cancer cells
of different genotypes in parallel. Through multiplexed in vivo genetic alterations, the effect of putative cancer
drivers can be uncovered at an unprecedented scale and resolution. The results of this proposal will be significant
because innovative methods for the cost-effective, quantitative, and multiplexed analysis of the genetic
determinants of cancer pathogenesis will illuminate novel aspects of tumorigenesis and accelerate our ability to
understand cancer evolution, drug responses, and therapy resistance.
项目摘要
基因组测序已分类人类癌症的体细胞改变,并确定了许多
推定的驱动基因。但是,人类癌的癌症通常通过顺序获取多个
基因组改变并简单地识别复发性基因组改变并不一定揭示其
对癌症生长的功能重要性。基因工程的鼠标模型已成为
对体内癌症基因功能的分析,但是它们的效用的广度受到了以下事实的限制
既不容易扩展也不足够定量。增加体内癌的范围和精度
建模,我们以前整合了常规遗传工程的鼠标模型,基于CRISPR/CAS9
具有数学方法的体细胞基因组工程和定量基因组学。我们开发了
使用条形码sgrna-的肺癌小鼠模型中灭活多个基因的方法
包含慢病毒载体。这种肿瘤条形码与测序(Tuba-Seq)方法可发现的大小
每种肿瘤,都可以平行研究单个小鼠中多种肿瘤基因型,并允许
在自chon癌模型中生成了基因功能的大规模图。我们的初步数据和
新颖的遗传系统,以及我们具有癌症专业知识的研究人员的专门合作团队
遗传学,小鼠模型,基因组编辑,临床癌症护理和定量建模使我们独特
定位进行这些研究。在此提案中,我们将扩展tuba-seq,以量化
组合遗传改变通过开发和验证平台的快速和验证
遗传改变体内肿瘤生长之间的相互作用的定量分析。启用多路复用
以及对时间控制基因组改变对体内癌细胞生长的影响的定量分析,
我们还将开发一个在已建立的肺肿瘤中进行诱导基因组编辑的系统。最后,我们将发展
新颖的体内方法,用于全面和广泛地发现癌细胞中的基因表达程序
并联不同的基因型。通过多重体内遗传改变,推定癌症的作用
可以以前所未有的规模和解决方案来发现驾驶员。该提案的结果将是重要的
因为遗传的具有成本效益,定量和多重分析的创新方法
癌症发病机理的决定因素将阐明肿瘤发生的新方面,并加速我们的能力
了解癌症的进化,药物反应和耐药性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dmitri Petrov其他文献
Dmitri Petrov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dmitri Petrov', 18)}}的其他基金
Unraveling mechanisms of tumor suppression in lung cancer
揭示肺癌肿瘤抑制机制
- 批准号:
10633103 - 财政年份:2019
- 资助金额:
$ 46.2万 - 项目类别:
Unraveling mechanisms of tumor suppression in lung cancer
揭示肺癌肿瘤抑制机制
- 批准号:
10164612 - 财政年份:2019
- 资助金额:
$ 46.2万 - 项目类别:
Unraveling mechanisms of tumor suppression in lung cancer
揭示肺癌肿瘤抑制机制
- 批准号:
10405507 - 财政年份:2019
- 资助金额:
$ 46.2万 - 项目类别:
(PQ4) Quantitative and multiplexed analysis of gene function in cancer in vivo
(PQ4)体内癌症基因功能的定量和多重分析
- 批准号:
10469407 - 财政年份:2018
- 资助金额:
$ 46.2万 - 项目类别:
A Quantitative Multiplexed Platform for the Pharmacogenomic Analysis of Lung Cancer
用于肺癌药物基因组学分析的定量多重平台
- 批准号:
9155816 - 财政年份:2016
- 资助金额:
$ 46.2万 - 项目类别:
Genomics of rapid adaptation in the lab and in the wild
实验室和野外快速适应的基因组学
- 批准号:
10794860 - 财政年份:2016
- 资助金额:
$ 46.2万 - 项目类别:
Genomics of rapid adaptation in the lab and in the wild
实验室和野外快速适应的基因组学
- 批准号:
9492599 - 财政年份:2016
- 资助金额:
$ 46.2万 - 项目类别:
Genomics of rapid adaptation in the lab and in the wild
实验室和野外快速适应的基因组学
- 批准号:
10413041 - 财政年份:2016
- 资助金额:
$ 46.2万 - 项目类别:
Genomics of rapid adaptation in the lab and in the wild
实验室和野外快速适应的基因组学
- 批准号:
9071712 - 财政年份:2016
- 资助金额:
$ 46.2万 - 项目类别:
Genomics of rapid adaptation in the lab and in the wild
实验室和野外快速适应的基因组学
- 批准号:
10204465 - 财政年份:2016
- 资助金额:
$ 46.2万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Systematic Genetic Analysis of C. albicans CNS Infection
白色念珠菌中枢神经系统感染的系统遗传分析
- 批准号:
10666122 - 财政年份:2023
- 资助金额:
$ 46.2万 - 项目类别:
Integrating single-cell connectivity, gene expression, and function in zebra finches
整合斑胸草雀的单细胞连接、基因表达和功能
- 批准号:
10657971 - 财政年份:2023
- 资助金额:
$ 46.2万 - 项目类别:
The developmental pathway of fetal-derived B cells
胎儿来源的 B 细胞的发育途径
- 批准号:
10735381 - 财政年份:2023
- 资助金额:
$ 46.2万 - 项目类别:
Health Outcomes of Discontinuing Aspirin in Older Adults with Alzheimer's Disease and Related Dementias
患有阿尔茨海默病和相关痴呆症的老年人停用阿司匹林的健康结果
- 批准号:
10662129 - 财政年份:2023
- 资助金额:
$ 46.2万 - 项目类别:
Mechanistic and Therapeutic Studies using a Xenotransplanted RUNX1-Haploinsufficient Murine Model
使用异种移植 RUNX1-单倍体不足小鼠模型进行机制和治疗研究
- 批准号:
10721954 - 财政年份:2023
- 资助金额:
$ 46.2万 - 项目类别: