Differential artery-vein analysis in OCT angiography for objective classification of diabetic retinopathy

OCT 血管造影中的动静脉差异分析用于糖尿病视网膜病变的客观分类

基本信息

  • 批准号:
    10080731
  • 负责人:
  • 金额:
    $ 35.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-02-01 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

Abstract: This project aims to establish differential artery-vein analysis in optical coherence tomography angiography (OCTA), and to validate comprehensive OCTA features for automated classification of diabetic retinopathy (DR). Early detection, prompt intervention, and reliable assessment of treatment outcomes are essential to prevent irreversible visual loss from DR. It is known that DR can target arteries and veins differently. Therefore, differential artery-vein analysis can provide better performance of DR detection and classification. However, clinical OCTA instruments lack the capability of artery-vein differentiation. During this project, we propose to use quantitative feature analysis of OCT, which is concurrently captured with OCTA, to guide artery- vein differentiation in OCTA. The first aim is to establish automated artery-vein differentiation in OCTA. In coordination with our recently demonstrated blood vessel tracking technique, OCT intensity/geometry features will be used to guide artery-vein differentiation in OCTA automatically. Differential artery-vein analysis of blood vessel tortuosity (BVT), blood vessel caliber (BVC), blood vessel density (BVD), vessel perimeter index (VPI), vessel branching coefficient (VBC), vessel branching angle (VBA), branching width ratio (BWR), fovea avascular zone area (FAZ-A) and FAZ contour irregularity (FAZ-CI) will be implemented. Key success criterion of the aim 1 study is to demonstrate robust artery-vein differentiation in OCTA, and to establish OCTA features for objective detection and classification of DR. The second aim is to validate automated OCTA classification of DR. We propose to employ ensemble machine learning to integrate multiple classifiers to achieve robust OCTA classification of DR. Key success criterion of the aim 2 study is to identify OCTA features and optimal-feature- combination to detect early DR, and to establish the correlations between the OCTA features and clinical biomarkers. The third aim is to verify OCTA prediction and evaluation of DR treatment. Our preliminary OCTA study of diabetic macular edema (DME) with anti-vascular endothelial growth factor (anti-VEGF) treatment has shown that BVD can serve as a biomarker predictive of visual improvement. During this project, we plan to test differential artery-vein analysis for DME treatment evaluation. Key success criterion of the aim 3 study is to identify artery-vein features to provide robust prediction and evaluation of DME treatment outcomes. As an alternative approach, we propose a fully convolutional neural network (FCNN) for deep machine leaning based artery-vein and DR classification. Early layers in the FCNN will produce simple features, which will be convolved and filtered into deeper layers to produce complex features for artery-vein and DR classification. Further investigation of the relationship between the new features learned through the machine learning process and clinical biomarkers will allow us to optimize the design for better DR classification. Success of this project will pave the way towards using quantitative OCTA features for early DR detection, objective prediction and assessment of treatment outcomes.
摘要:该项目旨在在光学相干断层扫描中建立差异动脉静脉分析 血管造影(八八),并验证糖尿病自动分类的综合八角 视网膜病(DR)。早期检测,及时干预以及对治疗结果的可靠评估是 防止DR的视觉丧失至关重要。众所周知,DR可以以不同的方式靶向动脉和静脉。 因此,差异动脉静脉分析可以更好地提供DR检测和分类的性能。 然而,临床八颗仪器缺乏动脉静脉分化的能力。在这个项目中,我们 提议使用OCT的定量特征分析,该分析与八章同时捕获,以引导动脉 八八静脉分化。第一个目的是在八角中建立自动动脉静脉分化。在 与我们最近展示的血管跟踪技术的协调,OCT强度/几何特征 将用于自动引导八颗动脉静脉分化。血液差异动脉分析 血管曲折(BVT),血管口径(BVC),血管密度(BVD),血管周边指数(VPI), 血管分支系数(VBC),血管分支角(VBA),分支宽度比(BWR),Fovea Avascular 将实施区域区域(FAZ-A)和FAZ轮廓不规则性(FAZ-CI)。目标的关键成功标准 1个研究是证明八八的稳健动脉静脉分化,并为物镜建立八八特征 DR的检测和分类。第二个目的是验证DR的自动八八分类。我们 建议采用整体机器学习以整合多个分类器以实现强大的八 DR的分类。 AIM 2研究的关键成功标准是确定八八个特征和最佳功能 - 结合检测早期DR并建立八八个特征与临床之间的相关性 生物标志物。第三个目的是验证DR治疗的八八颗预测和评估。我们的初步八颗 研究具有抗血管内皮生长因子(抗VEGF)治疗的糖尿病性黄斑水肿(DME)的研究 表明BVD可以作为视觉改进的生物标志物预测。在此项目中,我们计划测试 用于DME治疗评估的差异动脉静脉分析。 AIM 3研究的关键成功标准是 识别动脉素食特征,以提供强大的预测和评估DME治疗结果。作为 替代方法,我们为深度机倾斜的完全卷积神经网络(FCNN)提出了 动脉静脉和DR分类。 FCNN中的早期层将产生简单的功能,这将被卷积 并过滤到更深的层中,以产生复杂的动脉静脉和DR分类。更远 调查通过机器学习过程学到的新功能之间的关系和 临床生物标志物将使我们能够优化设计以更好地分类。这个项目的成功将 铺平使用定量八达特征进行早期DR检测,客观预测和 评估治疗结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennifer Irene Lim其他文献

Jennifer Irene Lim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jennifer Irene Lim', 18)}}的其他基金

Differential artery-vein analysis in OCT angiography for objective classification of diabetic retinopathy
OCT 血管造影中的动静脉差异分析用于糖尿病视网膜病变的客观分类
  • 批准号:
    10368040
  • 财政年份:
    2020
  • 资助金额:
    $ 35.17万
  • 项目类别:
Differential artery-vein analysis in OCT angiography for objective classification of diabetic retinopathy
OCT 血管造影中的动静脉差异分析用于糖尿病视网膜病变的客观分类
  • 批准号:
    10680158
  • 财政年份:
    2020
  • 资助金额:
    $ 35.17万
  • 项目类别:
Differential artery-vein analysis in OCT angiography for objective classification of diabetic retinopathy
OCT 血管造影中的动静脉差异分析用于糖尿病视网膜病变的客观分类
  • 批准号:
    10558567
  • 财政年份:
    2020
  • 资助金额:
    $ 35.17万
  • 项目类别:

相似国自然基金

非均匀退磁影响下城轨列车永磁无位置传感器牵引系统容错控制研究
  • 批准号:
    52307068
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于鸟喙特征的仿生割胶刀摩擦特性及其对割面质量影响机理研究
  • 批准号:
    52305251
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
轴流泵作透平角区分离涡演化对压力脉动的影响机理及控制策略
  • 批准号:
    52309116
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
转录共激活因子MED1对银屑病微环境稳态的影响及其机制研究
  • 批准号:
    82304025
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
混用模式下戊唑醇稻作环境行为归趋对枯草芽孢杆菌生物被膜形成的影响及机制
  • 批准号:
    32372630
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.17万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了