Differential artery-vein analysis in OCT angiography for objective classification of diabetic retinopathy
OCT 血管造影中的动静脉差异分析用于糖尿病视网膜病变的客观分类
基本信息
- 批准号:10080731
- 负责人:
- 金额:$ 35.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAngiographyAreaArteriesBiological MarkersBlindnessBlood VesselsBlood capillariesCaliberClassificationClinicalColorComplexDerivation procedureDetectionDiabetes MellitusDiabetic RetinopathyDiseaseEarly DiagnosisEvaluationExudateEye diseasesFosteringFundus photographyGeometryHealth ExpendituresIndividualInterventionInvestigationMachine LearningMapsMethodsMicroaneurysmModernizationOphthalmologistOptical Coherence TomographyOpticsPerformanceProcessReflex actionRetinaRetinal EdemasRetinal HemorrhageSensitivity and SpecificitySourceStagingStandardizationSymptomsTechniquesTelemedicineTestingThinnessTranslatingTreatment outcomeVascular Endothelial Growth FactorsVeinsVenousVisualWidthbasebevacizumabclinical biomarkersconvolutional neural networkdeep neural networkdensitydesigndiabeticdiabetic patientexperiencefovea centralisfundus imagingglobal healthimage registrationimaging capabilitiesimprovedindexinginstrumentmacular edemapredictive markerpreventrural areasuccesssupport vector machineunderserved areavascular abnormality
项目摘要
Abstract: This project aims to establish differential artery-vein analysis in optical coherence tomography
angiography (OCTA), and to validate comprehensive OCTA features for automated classification of diabetic
retinopathy (DR). Early detection, prompt intervention, and reliable assessment of treatment outcomes are
essential to prevent irreversible visual loss from DR. It is known that DR can target arteries and veins differently.
Therefore, differential artery-vein analysis can provide better performance of DR detection and classification.
However, clinical OCTA instruments lack the capability of artery-vein differentiation. During this project, we
propose to use quantitative feature analysis of OCT, which is concurrently captured with OCTA, to guide artery-
vein differentiation in OCTA. The first aim is to establish automated artery-vein differentiation in OCTA. In
coordination with our recently demonstrated blood vessel tracking technique, OCT intensity/geometry features
will be used to guide artery-vein differentiation in OCTA automatically. Differential artery-vein analysis of blood
vessel tortuosity (BVT), blood vessel caliber (BVC), blood vessel density (BVD), vessel perimeter index (VPI),
vessel branching coefficient (VBC), vessel branching angle (VBA), branching width ratio (BWR), fovea avascular
zone area (FAZ-A) and FAZ contour irregularity (FAZ-CI) will be implemented. Key success criterion of the aim
1 study is to demonstrate robust artery-vein differentiation in OCTA, and to establish OCTA features for objective
detection and classification of DR. The second aim is to validate automated OCTA classification of DR. We
propose to employ ensemble machine learning to integrate multiple classifiers to achieve robust OCTA
classification of DR. Key success criterion of the aim 2 study is to identify OCTA features and optimal-feature-
combination to detect early DR, and to establish the correlations between the OCTA features and clinical
biomarkers. The third aim is to verify OCTA prediction and evaluation of DR treatment. Our preliminary OCTA
study of diabetic macular edema (DME) with anti-vascular endothelial growth factor (anti-VEGF) treatment has
shown that BVD can serve as a biomarker predictive of visual improvement. During this project, we plan to test
differential artery-vein analysis for DME treatment evaluation. Key success criterion of the aim 3 study is to
identify artery-vein features to provide robust prediction and evaluation of DME treatment outcomes. As an
alternative approach, we propose a fully convolutional neural network (FCNN) for deep machine leaning based
artery-vein and DR classification. Early layers in the FCNN will produce simple features, which will be convolved
and filtered into deeper layers to produce complex features for artery-vein and DR classification. Further
investigation of the relationship between the new features learned through the machine learning process and
clinical biomarkers will allow us to optimize the design for better DR classification. Success of this project will
pave the way towards using quantitative OCTA features for early DR detection, objective prediction and
assessment of treatment outcomes.
摘要:该项目旨在建立光学相干断层扫描中的差分动静脉分析
血管造影 (OCTA),并验证糖尿病自动分类的综合 OCTA 特征
视网膜病变(DR)。早期发现、及时干预和对治疗结果的可靠评估是
对于防止 DR 造成不可逆转的视力丧失至关重要。众所周知,DR 可以以不同的方式针对动脉和静脉。
因此,差分动静脉分析可以提供更好的DR检测和分类性能。
然而,临床OCTA仪器缺乏动静脉区分能力。在这个项目期间,我们
建议使用与 OCTA 同时捕获的 OCT 定量特征分析来引导动脉
OCTA 中的静脉分化。第一个目标是在 OCTA 中建立自动动静脉区分。在
与我们最近展示的血管跟踪技术、OCT 强度/几何特征相协调
将用于自动引导 OCTA 中的动静脉分化。血液的动静脉差异分析
血管迂曲度(BVT)、血管口径(BVC)、血管密度(BVD)、血管周长指数(VPI)、
血管分支系数 (VBC)、血管分支角度 (VBA)、分支宽度比 (BWR)、中央凹无血管
将实施区域区域(FAZ-A)和FAZ轮廓不规则(FAZ-CI)。目标的关键成功标准
1 项研究旨在证明 OCTA 中强大的动静脉分化,并建立客观的 OCTA 特征
DR 的检测和分类。第二个目标是验证 DR 的自动 OCTA 分类。我们
建议采用集成机器学习来集成多个分类器以实现鲁棒的 OCTA
DR的分类目标 2 研究的关键成功标准是识别 OCTA 特征和最佳特征
联合检测早期 DR,并建立 OCTA 特征与临床之间的相关性
生物标志物。第三个目标是验证 OCTA 对 DR 治疗的预测和评估。我们初步的 OCTA
使用抗血管内皮生长因子(抗 VEGF)治疗糖尿病性黄斑水肿(DME)的研究已
表明 BVD 可以作为预测视力改善的生物标志物。在这个项目期间,我们计划测试
用于 DME 治疗评估的差分动静脉分析。目标 3 研究的关键成功标准是
识别动静脉特征,为 DME 治疗结果提供可靠的预测和评估。作为一个
另一种方法是,我们提出了一种基于深度机器学习的全卷积神经网络(FCNN)
动静脉和 DR 分类。 FCNN 中的早期层将产生简单的特征,这些特征将被卷积
并过滤到更深的层以产生用于动静脉和 DR 分类的复杂特征。更远
研究通过机器学习过程学到的新特征之间的关系
临床生物标志物将使我们能够优化设计以实现更好的 DR 分类。该项目的成功将
为使用定量 OCTA 特征进行早期 DR 检测、客观预测和
评估治疗结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Irene Lim其他文献
Jennifer Irene Lim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Irene Lim', 18)}}的其他基金
Differential artery-vein analysis in OCT angiography for objective classification of diabetic retinopathy
OCT 血管造影中的动静脉差异分析用于糖尿病视网膜病变的客观分类
- 批准号:
10368040 - 财政年份:2020
- 资助金额:
$ 35.17万 - 项目类别:
Differential artery-vein analysis in OCT angiography for objective classification of diabetic retinopathy
OCT 血管造影中的动静脉差异分析用于糖尿病视网膜病变的客观分类
- 批准号:
10680158 - 财政年份:2020
- 资助金额:
$ 35.17万 - 项目类别:
Differential artery-vein analysis in OCT angiography for objective classification of diabetic retinopathy
OCT 血管造影中的动静脉差异分析用于糖尿病视网膜病变的客观分类
- 批准号:
10558567 - 财政年份:2020
- 资助金额:
$ 35.17万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 35.17万 - 项目类别:
Neonatal Optical Coherence Tomography Angiography to Assess the Effects of Postnatal Exposures on Retinal Development and Predict Neurodevelopmental Outcomes
新生儿光学相干断层扫描血管造影评估产后暴露对视网膜发育的影响并预测神经发育结果
- 批准号:
10588086 - 财政年份:2023
- 资助金额:
$ 35.17万 - 项目类别:
Point-of-care ophthalmic diagnostic imaging of retinopathy of prematurity
早产儿视网膜病变的护理点眼科诊断成像
- 批准号:
10587600 - 财政年份:2023
- 资助金额:
$ 35.17万 - 项目类别: