Bidirectional optical-acoustic mesoscopic neural interface for image-guided neuromodulation in behaving animals
用于行为动物图像引导神经调节的双向光声介观神经接口
基本信息
- 批准号:10117461
- 负责人:
- 金额:$ 34.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-30 至 2021-09-29
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcoustic StimulationAcousticsAnimalsAreaBehaviorBehavioralBloodBrainBrain imagingCalciumCellsCharacteristicsCodeCollectionDataDecision MakingDevelopmentDiagnosisElementsEquipmentFeasibility StudiesFocused UltrasoundFunctional ImagingGenerationsGeneticGoalsHeadHolographyHybridsImageLasersLeadLight MicroscopeLinkMeasurementMethodsMicroscopyModalityModernizationMonitorMusNeuronsNeurosciencesOdorsOlfactory PathwaysOpticsPatternPenetrationPerformancePhasePhysiologic pulsePopulationPreparationProtocols documentationResolutionRodentSensorySignal TransductionStimulusStructureSurfaceSystemTechniquesTechnologyTestingTimeTissuesTransducersUltrasonic waveUltrasonicsUltrasonographyValidationWorkactivity markerbasebehavioral studybrain metabolismcalcium indicatorcraniumdesign and constructionfluorescence imaginghemodynamicsimage guidedimaging modalityin vivoinstrumentnervous system disorderneural patterningneural stimulationneuroimagingneuroregulationnovelnovel strategiesolfactory bulboptical imagingoptoacoustic tomographyreal time monitoringrelating to nervous systemscreeningsensorsimulationspatiotemporaltargeted imagingtemporal measurementtooltransmission process
项目摘要
Summary
Neuroscience has an essential requirement for large-scale neural recording and
perturbation technologies for the understanding of brain function, as well as in the
diagnosis and treatment of neurological disorders. At present, a large gap exists
between the localized optical microscopy studies looking at fast neuronal activities at
single cell resolution level and the whole-brain observations of slow hemodynamics and
brain metabolism provided by the macroscopic imaging modalities. The proposed three-
year project is aimed at developing a highly synergistic triple-modality platform
combining acoustic stimulation with volumetric optoacoustic and planar fluorescence
imaging to volumetrically monitor and perturb the activity of large, distributed neuronal
populations with unprecedented spatiotemporal resolution. This goal will be
accomplished by constructing a bi-directional interface based on a spherical matrix array
transducer capable of both recording real-time three-dimensional optoacoustic
tomographic data and acoustic phased array beam steering and holography for
ultrasonic neural stimulation. The high temporal resolution in these volumetric recordings
will make it possible to directly and indirectly track neural activity, with novel near-
infrared calcium (Ca2+) sensors and intrinsic hemodynamic contrast, respectively. The
resulting scanner will simultaneously record activity from large fields of view in scattering
brains, including deep subcortical structures inaccessible by any light microscope. The
plan of action includes screening of several potential candidates for Ca2+ imaging,
including genetic and chemigenetic sensors. System validation will be performed in vivo
in mice, aiming at establishing sensitivity and spatiotemporal resolution metrics in
detecting Ca2+ relevant for sensory-based decision making. Finally, the complete system
will be used to probe the link between neural activity and behavior by systematically
characterizing the effects of image-targeted US perturbation in mice performing
olfactory-guided tasks. In contrast to purely optical techniques, the proposed method is
tailored for non-invasive deep brain observations and manipulations and is ideal for large
fields of view and columnar-scale mesoscopic resolutions.
概括
神经科学对大规模神经记录和
用于理解大脑功能以及在
神经系统疾病的诊断和治疗。目前存在较大差距
局部光学显微镜研究观察快速神经元活动
单细胞分辨率水平和慢血流动力学的全脑观察
宏观成像方式提供的脑代谢。拟议的三
年项目旨在开发一个高度协同的三模态平台
将声刺激与体积光声和平面荧光相结合
成像以体积监测和扰乱大型分布式神经元的活动
具有前所未有的时空分辨率的人群。这个目标将是
通过构建基于球形矩阵阵列的双向接口来完成
能够实时记录三维光声的换能器
断层扫描数据和声相控阵波束控制和全息术
超声波神经刺激。这些体积记录的高时间分辨率
将使直接和间接跟踪神经活动成为可能,并具有新颖的近场
分别是红外钙 (Ca2+) 传感器和内在血流动力学对比。这
由此产生的扫描仪将同时记录大视野的散射活动
大脑,包括任何光学显微镜都无法观察到的深层皮层下结构。这
行动计划包括筛选几个潜在的 Ca2+ 成像候选者,
包括遗传和化学遗传传感器。系统验证将在体内进行
在小鼠中,旨在建立灵敏度和时空分辨率指标
检测与基于感官的决策相关的 Ca2+。最后是完整的系统
将用于通过系统地探索神经活动和行为之间的联系
描述以图像为目标的 US 扰动对小鼠表演的影响
嗅觉引导的任务。与纯光学技术相比,所提出的方法是
专为非侵入性深部大脑观察和操作而定制,非常适合大型
视场和柱状尺度介观分辨率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Razansky其他文献
Daniel Razansky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Razansky', 18)}}的其他基金
Five-dimensional optoacoustic tomography for large-scale electrophysiology in scattering brains
用于散射脑大规模电生理学的五维光声断层扫描
- 批准号:
9055849 - 财政年份:2015
- 资助金额:
$ 34.32万 - 项目类别:
相似国自然基金
成骨细胞的听觉感应
- 批准号:31570943
- 批准年份:2015
- 资助金额:61.0 万元
- 项目类别:面上项目
相似海外基金
Changes in apical cochlear mechanics after cochlear implantation
人工耳蜗植入后耳蜗顶端力学的变化
- 批准号:
10730981 - 财政年份:2023
- 资助金额:
$ 34.32万 - 项目类别:
High-resolution bidirectional optical-acoustic mesoscopic neural interface for image-guided neuromodulation in behaving animals
用于行为动物图像引导神经调节的高分辨率双向光声介观神经接口
- 批准号:
10407380 - 财政年份:2022
- 资助金额:
$ 34.32万 - 项目类别:
Toward Clinical Translation of Acoustic Angiography: Optimization of Microvascular Ultrasound Imaging on a Novel Dual-frequency Array
声学血管造影的临床转化:新型双频阵列微血管超声成像的优化
- 批准号:
9979626 - 财政年份:2019
- 资助金额:
$ 34.32万 - 项目类别:
Biodegradable Piezoelectric Scaffold for Bone regeneration
用于骨再生的可生物降解压电支架
- 批准号:
9913470 - 财政年份:2019
- 资助金额:
$ 34.32万 - 项目类别:
Reduction of Intracochlear Trauma and Fibrosis Using Dual Network, Zwitterionic Hydrogel Thin Films on Cochlear Implant Surfaces
使用人工耳蜗表面上的双网络两性离子水凝胶薄膜减少耳蜗内创伤和纤维化
- 批准号:
10659699 - 财政年份:2013
- 资助金额:
$ 34.32万 - 项目类别: