Data Integration Methods for Environmental Exposures with Applications to Air Pollution and Asthma Morbidity
环境暴露数据集成方法及其在空气污染和哮喘发病率中的应用
基本信息
- 批准号:10115732
- 负责人:
- 金额:$ 42.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAir PollutantsAir PollutionAlgorithmsAreaAsthmaBiomassCessation of lifeChemicalsCitiesClimateCoalComplexComputer ModelsComputer SimulationDataData SetData SourcesDatabasesDependenceDevelopmentDocumentationDustElderlyEmergency department visitEnsureEnvironmental EpidemiologyEnvironmental ExposureEnvironmental HealthEnvironmental PollutionEpidemiologyExposure toFutureGasolineGoalsHealthHeterogeneityImageryIndividualJointsKnowledgeLinkLocationMeasurementMeteorologyMethodsModelingMonitorMorbidity - disease rateNational Institute of Environmental Health SciencesOutcomeOzoneParticulate MatterPlayPoliciesPollutionPopulationPreventionProcessProxyPublic HealthReproducibilityResearchResearch PriorityResolutionRetrievalRiskRisk AssessmentRisk ReductionRoleSoilSourceStatistical MethodsStatistical ModelsTimeToxicologyUncertaintyWorkWorld Health Organizationage groupambient air pollutionatmospheric sciencesbaseclimate changedata integrationevidence baseexperienceextreme heatfine particlesimprovedmetropolitanmodels and simulationpollutantpopulation basedprogramsremote sensingsensor technologysimulationspatiotemporalsuccesstooltropospheric ozone
项目摘要
PROJECT SUMMARY
Accurate and reliable exposure estimates are crucial to the success of any environmental health study. The
overarching goal of this project is to develop and apply statistical methods to improve exposure assessment
and exposure uncertainty quantification for spatio-temporal environmental pollution fields. This is accomplished
by statistically integrating observations with additional data sources, including state-of-the-art computer model
simulations and satellite imagery. We will develop methods motivated by three current research priorities in air
pollution epidemiology: a) identifying susceptible sub-populations most at risk to air pollution exposures; (b) quantifying health impacts of air pollution under a changing climate; and (c) understanding sources of air pollution to
develop control strategies. In Aim 1, we will develop multi-resolutional and multivariate data integration methods
for ambient air pollution concentrations. We will supplement sparse observations from monitoring networks with
simulations from a chemical transport model and multiple satellite retrieval parameters. The proposed methods
will exploit the between-pollutant dependence and the spatio-temporal autocorrelation within each pollutant for
better predictions. In Aim 2, we will develop multivariate bias-correction methods for climate model simulations
using historical observations. The goal is to perform joint bias-correction across multiple variables such that the
observed dependence is retained in future projections. In Aim 3, we will develop ensemble source apportionment
methods for fine particulate matter pollution (PM2.5). The methods will estimate emission source contributions
by combining results from several algorithms that incorporate different types of external information and assumptions. We will further utilize computer model simulations to spatially interpolate source information to locations
without monitors. Methods developed from Aims 1, 2, and 3 will be used to create national databases of (1) daily
concentration estimates for criteria pollutants and major constituents of PM2.5, (2) projections of ozone levels
due to climate change under different future emission scenarios, and (3) daily estimates of contributions from
multiple PM2.5 sources, including coal combustion, on-road diesel and gasoline combustion, biomass burning,
and resuspended soil/dust. We will also provide uncertainty estimates, detailed documentation, and R packages
to ensure these methods and estimates can be used in other environmental health studies. In Aim 4, we will
acquire individual-level emergency department (ED) visit data from 25 cities during the period 2005-2014. The
data integration products will be used to estimate short-term associations between asthma ED visits and multiple
air pollutants and pollutant sources. The proposed health study lls a major gap by considering both elderly and
non-elderly susceptible populations to support the development of targeted, effective risk reduction and prevention activities. While air pollution serves as the motivating application in this project, the methods proposed are
highly applicable to other environmental exposures.
项目概要
准确可靠的暴露估计对于任何环境健康研究的成功都至关重要。这
该项目的总体目标是开发和应用统计方法来改进暴露评估
时空环境污染场的暴露不确定性量化。这样就完成了
通过统计整合观察结果与其他数据源,包括最先进的计算机模型
模拟和卫星图像。我们将开发由当前空气中三个研究重点驱动的方法
污染流行病学: a) 确定最容易受到空气污染暴露风险的易感人群; (b) 量化气候变化下空气污染对健康的影响; (c) 了解空气污染源
制定控制策略。在目标 1 中,我们将开发多分辨率和多变量数据集成方法
为环境空气污染浓度。我们将补充监测网络的稀疏观测结果
化学传输模型和多个卫星检索参数的模拟。提出的方法
将利用污染物之间的依赖性和每种污染物内的时空自相关性
更好的预测。在目标 2 中,我们将开发用于气候模型模拟的多元偏差校正方法
使用历史观察。目标是跨多个变量执行联合偏差校正,以便
观察到的依赖性将保留在未来的预测中。在目标 3 中,我们将开发集成源分配
细颗粒物污染(PM2.5)的方法。该方法将估算排放源的贡献
通过结合多种包含不同类型外部信息和假设的算法的结果。我们将进一步利用计算机模型模拟将源信息空间插值到位置
没有显示器。根据目标 1、2 和 3 制定的方法将用于创建 (1) 每日的国家数据库
标准污染物和 PM2.5 主要成分的浓度估算,(2) 臭氧水平预测
由于未来不同排放情景下的气候变化,以及(3)每日估算的贡献
多种 PM2.5 来源,包括煤炭燃烧、道路柴油和汽油燃烧、生物质燃烧、
和重新悬浮的土壤/灰尘。我们还将提供不确定性估计、详细文档和 R 包
确保这些方法和估计可用于其他环境健康研究。在目标 4 中,我们将
获取 2005 年至 2014 年期间 25 个城市的个人急诊科 (ED) 就诊数据。这
数据集成产品将用于估计哮喘急诊就诊与多次就诊之间的短期关联
空气污染物和污染源。拟议的健康研究通过考虑老年人和
非老年人易感人群支持开展有针对性的、有效的风险减少和预防活动。虽然空气污染是该项目的应用动机,但提出的方法是
非常适用于其他环境暴露。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Howard H Chang其他文献
The Effect of Novel Antipsychotics on Cognitive Function
新型抗精神病药对认知功能的影响
- DOI:
10.3928/0048-5713-19991101-10 - 发表时间:
1999 - 期刊:
- 影响因子:0.5
- 作者:
I. Berman;D. Klegon;H. Fiedosewicz;Howard H Chang - 通讯作者:
Howard H Chang
Is There a Distinct Subtype of Obsessive-Compulsive Schizophrenia?
强迫性精神分裂症是否存在独特的亚型?
- DOI:
10.3928/0048-5713-20001001-09 - 发表时间:
2000 - 期刊:
- 影响因子:0.5
- 作者:
I. Berman;Howard H Chang;D. Klegon - 通讯作者:
D. Klegon
Obsessive-Compulsive Symptoms in Schizophrenia: Neuropsychological Perspectives
精神分裂症的强迫症状:神经心理学观点
- DOI:
10.3928/0048-5713-19990901-09 - 发表时间:
1999 - 期刊:
- 影响因子:0.5
- 作者:
I. Berman;Howard H Chang;D. Klegon - 通讯作者:
D. Klegon
Treatment Issues for Patients With Schizophrenia Who Have Obsessive-Compulsive Symptoms
有强迫症状的精神分裂症患者的治疗问题
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Howard H Chang;I. Berman - 通讯作者:
I. Berman
Howard H Chang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Howard H Chang', 18)}}的其他基金
Methods for Estimating Disease Burden of Seasonal Influenza
估计季节性流感疾病负担的方法
- 批准号:
10682150 - 财政年份:2023
- 资助金额:
$ 42.43万 - 项目类别:
Climate & Health Actionable Research and Translation Center
气候
- 批准号:
10835462 - 财政年份:2023
- 资助金额:
$ 42.43万 - 项目类别:
Neighborhood transportation vulnerability and geographic patterns of diabetes-related limb loss
社区交通脆弱性和糖尿病相关肢体丧失的地理模式
- 批准号:
10680610 - 财政年份:2022
- 资助金额:
$ 42.43万 - 项目类别:
Neighborhood transportation vulnerability and geographic patterns of diabetes-related limb loss
社区交通脆弱性和糖尿病相关肢体丧失的地理模式
- 批准号:
10539547 - 财政年份:2022
- 资助金额:
$ 42.43万 - 项目类别:
Data Integration Methods for Environmental Exposures with Applications to Air Pollution and Asthma Morbidity
环境暴露数据集成方法及其在空气污染和哮喘发病率中的应用
- 批准号:
10288264 - 财政年份:2021
- 资助金额:
$ 42.43万 - 项目类别:
Climate Penalty: Climate-driven Increases in Ozone and PM2.5 Levels and Mortality
气候惩罚:气候驱动的臭氧和 PM2.5 水平和死亡率增加
- 批准号:
10372176 - 财政年份:2021
- 资助金额:
$ 42.43万 - 项目类别:
Dust storms and emergency department visits in four southwestern US states
美国西南部四个州遭遇沙尘暴和急诊室就诊
- 批准号:
10372201 - 财政年份:2021
- 资助金额:
$ 42.43万 - 项目类别:
Extreme heat events and pregnancy duration: a national study
极端高温事件与怀孕持续时间:一项全国性研究
- 批准号:
10159262 - 财政年份:2018
- 资助金额:
$ 42.43万 - 项目类别:
相似国自然基金
调控金属–石墨化炭电子相互作用促进氧活化及室内空气污染物室温催化消除
- 批准号:22376165
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
针对中等尺寸分子空气污染物检测的金属-有机骨架基传感器及其气敏性能研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
双碳目标不同实现路径下空气污染物组分变化对慢性肾脏病的影响研究
- 批准号:
- 批准年份:2022
- 资助金额:20 万元
- 项目类别:青年科学基金项目
混频异构数据下空气污染物减排与温室气体减排“协同效应”的量化测度及优化控制
- 批准号:72264016
- 批准年份:2022
- 资助金额:28 万元
- 项目类别:地区科学基金项目
实际道路典型交通相关空气污染物的车内暴露特征研究
- 批准号:52000117
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
AirPressureNYC: Reducing AIR pollution to lower blood PRESSURE among New York City public housing residents
AirPressureNYC:减少空气污染以降低纽约市公共住房居民的血压
- 批准号:
10638946 - 财政年份:2023
- 资助金额:
$ 42.43万 - 项目类别:
Impact of benzene-induced MIA on fetal T cell development
苯诱导的 MIA 对胎儿 T 细胞发育的影响
- 批准号:
10605881 - 财政年份:2023
- 资助金额:
$ 42.43万 - 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 42.43万 - 项目类别:
A Low-Cost Wearable Connected Health Device for Monitoring Environmental Pollution Triggers of Asthma in Communities with Health Disparities
一种低成本可穿戴互联健康设备,用于监测健康差异社区中哮喘的环境污染诱因
- 批准号:
10601615 - 财政年份:2023
- 资助金额:
$ 42.43万 - 项目类别:
Integrated exposome profiling to identify environmental risk factors of metabolic disease in mid- and late-life
综合暴露组分析可识别中晚年代谢疾病的环境危险因素
- 批准号:
10638457 - 财政年份:2023
- 资助金额:
$ 42.43万 - 项目类别: