ER stress mediates methylglyoxal-evoked AIS shortening and neuronal dysfunction
内质网应激介导甲基乙二醛诱发的 AIS 缩短和神经元功能障碍
基本信息
- 批准号:10055833
- 负责人:
- 金额:$ 4.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAddressAffectAfrican AmericanAlzheimer&aposs DiseaseApplications GrantsAxonBehaviorBiological AssayBrainButyric AcidsCalciumCalpainCaspaseCell DeathCell SurvivalCharacteristicsClinicClinicalCognition DisordersCognitive deficitsCommunitiesCoupledDataData AnalysesDiabetes MellitusDiseaseEndoplasmic ReticulumExposure toFellowshipFemaleFunctional disorderFutureGRP78 geneGenesGlucoseGoalsGrantHippocampus (Brain)HourImmunofluorescence ImmunologicImpaired cognitionKnowledgeLeadLengthLifeMeasuresMediatingMediator of activation proteinMentorsModelingMolecularMusNational Institute of Neurological Disorders and StrokeNational Research Service AwardsNerve DegenerationNervous System PhysiologyNervous system structureNeurodegenerative DisordersNeurologicNeuronal DysfunctionNeuronsNon-Insulin-Dependent Diabetes MellitusParentsPatientsPharmaceutical PreparationsPhysiciansPositioning AttributeProcessProteinsPublic HealthPyruvaldehydeResearchResearch DesignResearch PersonnelResourcesScientistStructureStudy SkillsSynaptic TransmissionTechniquesTestingTrainingTranslational ResearchTunicamycinWestern BlottingWomanWorkcareercareer developmentcomorbiditycytotoxicitydb/db mousediabeticdoctoral studentendoplasmic reticulum stressexperienceglucose metabolisminhibitor/antagonistinnovationmulti-electrode arraysnetwork dysfunctionneural networkneuronal excitabilitynovelparent grantpreventprotein complexresponsesuccess
项目摘要
PROJECT SUMMARY/ABSTRACT (Diversity Supplement)
Alterations in the axon initial segment (AIS) are key pathophysiologies in various neurodegenerative
diseases, including diabetes. Shortening of AIS length has been shown to lower neuronal excitability and is
also implicated in cognitive impairment in type 2 diabetes and Alzheimer's disease. However, the cellular and
molecular mechanisms of how these domains are altered in disease conditions remain poorly understood. This
critical gap in knowledge limits the field's ability to manipulate the AIS for treatment. In order to fill this
significant gap in our knowledge, the parent grant (R01 NS107398) tests the hypothesis that methylglyoxal
(MG) disrupts AIS protein complexes via calpain activation and inhibits nervous system function. The current
diversity supplement proposal seeks to elucidate more detailed mechanisms that lead to AIS shortening. The
overall objective of this application is to identify a critical cellular mechanism that activates calpains in response
to MG increase. The prior studies and preliminary data provided here have identified endoplasmic reticulum
(ER) stress as a potential mediator for calpain activation and AIS shortening induced by MG increase. The
hypothesis is that sublethal increase of MG induces ER stress, leading to calpain activation and AIS shortening.
We will test this hypothesis via two Specific Aims. Aim 1: Test the hypothesis that, independent of MG increase,
sublethal levels of ER stress cause calpain activation, AIS shortening, and neuronal network dysfunction. Aim
2: Test the hypothesis that inhibition of ER stress prevents MG-induced calpain activation, AIS shortening, and
neuronal network dysfunction. This application is conceptually innovative, as we propose that ER stress is a
key mediator of AIS shortening and neuronal dysfunction induced by MG. Innovative use of multi-electrode
arrays will determine the effects of induced ER stress and increased MG together with ER stress inhibition on
neural network function. The proposed research is significant, because completion of the aims will validate ER
stress as potential targets for translational research aimed at treatments for comorbid cognitive impairment in
type 2 diabetes. These results also have potential to impact a wide variety of neurodegenerative conditions,
such as Alzheimer's. In addition to the scientific work, the important aspect of this diversity supplement is to
support the career development of an African American female MD/PhD student. Her career goal is an
independent physician scientist studying changes in neural transmission and cognitive defects caused by
neurodegenerative diseases. Cognitive disorders disproportionately affect African Americans, yet African
Americans are underrepresented in the scientific workforce. To address the inequity in heath research and
clinics, it is critical to diversify the field. Thus, the proposed work and mentoring activities in this diversity
supplement will ultimately provide a sustained and powerful influence on the field of neurodegenerative
diseases.
项目摘要/摘要(多样性补充)
轴突初始段(AI)的改变是各种神经退行性的关键病理生理学
疾病,包括糖尿病。 AIS长度的缩短已显示为降低神经元兴奋性,为
还与2型糖尿病和阿尔茨海默氏病的认知障碍有关。但是,细胞和
在疾病条件下如何改变这些结构域的分子机制仍然很少了解。这
知识的关键差距限制了该领域操纵AIS治疗的能力。为了填补这个
我们所知的显着差距,父授予的赠款(R01 NS107398)检验了甲基糖的假设
(mg)通过钙蛋白酶激活破坏AIS蛋白复合物并抑制神经系统功能。电流
多样性补充提案旨在阐明导致AIS缩短的更详细的机制。这
该应用的总体目的是确定一种关键的细胞机制,该机制激活钙蛋白酶以响应
毫克增加。此处提供的先前研究和初步数据已经确定了内质网
(ER)应力作为calpain激活和AIS缩短的潜在介体。这
假设是,MG的余量增加会诱导ER应力,从而导致钙蛋白酶的激活和AIS缩短。
我们将通过两个具体目标检验这一假设。目标1:检验以下假设:与MG增加无关,
亚致死水平的ER应力会导致钙蛋白酶激活,AIS缩短和神经元网络功能障碍。目的
2:检验抑制ER应力的假设可防止MG诱导的钙蛋白酶激活,AIS缩短和
神经元网络功能障碍。该应用在概念上是创新的,因为我们建议AR压力是一种
MG诱导的AIS缩短和神经元功能障碍的关键介质。多电极的创新使用
阵列将确定诱导的ER应力和增加MG的影响以及ER应力抑制对
神经网络功能。拟议的研究很重要,因为目标的完成将验证ER
压力是转化研究的潜在目标,旨在处理合并症的认知障碍
2型糖尿病。这些结果也有可能影响多种神经退行性条件,
例如阿尔茨海默氏症。除了科学工作外,这种多样性补充的重要方面是
支持非裔美国女性医学博士/博士生的职业发展。她的职业目标是
独立的医师科学家研究神经传播的变化和由
神经退行性疾病。认知障碍不成比例地影响非洲裔美国人,但非洲人
美国人在科学劳动力中的人数不足。解决Heath Research和
诊所,使该领域多样化至关重要。因此,拟议的工作和指导活动在这种多样性中
补充最终将对神经退行性领域产生持续和强大的影响
疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Keiichiro Susuki其他文献
Keiichiro Susuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Keiichiro Susuki', 18)}}的其他基金
Cell type-specific roles of calpain-2 in formation of peripheral myelinated nerves
calpain-2 在周围有髓神经形成中的细胞类型特异性作用
- 批准号:
9805892 - 财政年份:2019
- 资助金额:
$ 4.06万 - 项目类别:
Disruption of Excitable Axonal Domains by Glucose Metabolite Methylglyoxal
葡萄糖代谢物甲基乙二醛对可兴奋轴突结构域的破坏
- 批准号:
10443534 - 财政年份:2019
- 资助金额:
$ 4.06万 - 项目类别:
Cell type-specific roles of calpain-2 in formation of peripheral myelinated nerves
calpain-2 在周围有髓神经形成中的细胞类型特异性作用
- 批准号:
10011907 - 财政年份:2019
- 资助金额:
$ 4.06万 - 项目类别:
Disruption of Excitable Axonal Domains by Glucose Metabolite Methylglyoxal
葡萄糖代谢物甲基乙二醛对可兴奋轴突结构域的破坏
- 批准号:
10247444 - 财政年份:2019
- 资助金额:
$ 4.06万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Genetically-Encoded, Non-Invasive and Wireless Modulation of Calcium Dynamics in Astrocytes With Spatiotemporal Precision and Depth
具有时空精度和深度的星形胶质细胞钙动态的基因编码、非侵入性无线调节
- 批准号:
10562265 - 财政年份:2023
- 资助金额:
$ 4.06万 - 项目类别:
Investigating the interactions of auxillary subunits with the Nav1.5 channel
研究辅助亚基与 Nav1.5 通道的相互作用
- 批准号:
10678156 - 财政年份:2023
- 资助金额:
$ 4.06万 - 项目类别:
BRITE-Eye: An integrated discovery engine for CNS therapeutic targets driven by high throughput genetic screens, functional readouts in human neurons, and machine learning
BRITE-Eye:由高通量遗传筛选、人类神经元功能读数和机器学习驱动的中枢神经系统治疗靶点的集成发现引擎
- 批准号:
10699137 - 财政年份:2023
- 资助金额:
$ 4.06万 - 项目类别: