BRITE-Eye: An integrated discovery engine for CNS therapeutic targets driven by high throughput genetic screens, functional readouts in human neurons, and machine learning
BRITE-Eye:由高通量遗传筛选、人类神经元功能读数和机器学习驱动的中枢神经系统治疗靶点的集成发现引擎
基本信息
- 批准号:10699137
- 负责人:
- 金额:$ 172.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-19 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAddressAffectArchitectureAreaBehaviorBenchmarkingBiochemicalBiological AssayBiologyCandidate Disease GeneCell modelCellsCentral Nervous SystemCentral Nervous System AgentsCentral Nervous System DiseasesClinicalClustered Regularly Interspaced Short Palindromic RepeatsComplexDataData SetDatabasesDimensionsDiseaseDisease PathwayDisease modelDown-RegulationDrug TargetingElectrophysiology (science)EpilepsyEyeFMR1FMRPFingerprintFragile X SyndromeGene ExpressionGene TargetingGenesGeneticGenetic ScreeningGenetic TranscriptionGenomicsGuide RNAHeterogeneityHumanHuman GenomeIndividualInduced pluripotent stem cell derived neuronsIndustrializationInterventionLearningLibrariesLightLocationMachine LearningMapsMarketingMeasurementMeasuresMediatingMedicalModalityModelingMolecularMolecular TargetNeurodevelopmental DisorderNeuronsOpticsPatientsPharmaceutical PreparationsPhasePhenotypePhysiologicalPhysiologyPopulationPredictive ValueProcessResolutionScreening ResultSpecificitySynapsesSystemTechnologyTestingTherapeuticTrainingTranslatingValidationViralWestern BlottingWorkanalysis pipelineanalytical toolautomated analysisconvolutional neural networkdeep learningdeep neural networkdisease phenotypedrug discoveryexcitatory neuronfunctional genomicsgene functiongenetic approachgenetic testinggenome wide screengenome-wideinduced pluripotent stem cellinstrumentknock-downloss of functionnervous system disorderneurophysiologynew therapeutic targetnovelnucleaseparticlepharmacologicprogramsscreeningsuccesstherapeutic developmenttherapeutic genetherapeutic targettherapeutically effectivetranscriptomicsvector
项目摘要
Project Summary
Neurological disorders affect millions of patients worldwide and represent a major unmet medical need. Recent
progress on developing new classes of central nervous system (CNS) therapeutics has lagged compared to
other disease areas. A key obstacle in the CNS drug discovery process has been a need for cellular models,
assays, and technologies that can more reliably assess disease-relevant neurophysiological parameters in a
human cellular context at the level of individual neurons and synapses, with the scale and resolution to capture
the complexity and variability of these systems. We propose to address this need through the integration of three
key technologies – (i) our high throughput BRITETM platform for all-optical physiology in human neurons, which
achieves single-cell and single-action-potential resolution with a throughput of ~500,000 neurons per day per
instrument; (ii) genomic screens using CRISPR nuclease to disrupt gene function; (iii) machine learning for
identification of fingerprints that represent complex physiological phenotypes with single-cell resolution. This
Phase II program includes four key objectives. 1) Establish CRISPRn screening conditions in human neurons.
We will select 20 candidate target genes, including epilepsy and neurodevelopmental targets to further optimize
assay conditions compatible with all-optical physiology phenotyping, including timing of genetic disruption and
concentration of CRISPRn/gRNA components for effective knockdown of gene targets. 2) Build deep-learning-
powered analytical tools for single-cell phenotyping. We will use deep neural networks to learn a compact vector
representation of neuronal behavior after pharmacological intervention that leverages our single cell resolution
measurements and accommodates potential heterogeneity in the population of neurons. 3) Identify genetic
modulators of neuronal function using a genome-wide CRISPRn screen. We will combine experimental
conditions and analytical models established in Aims 1-2 to carry out a genome-wide CRISPRn screen (>18,000
gene targets) with arrayed gRNA libraries in wild-type human iPSC-excitatory neurons. We will identify gene
targets whose downregulation leads to significant changes in functional parameters. Potential hits and specificity
of target knockdown will be confirmed in independent rounds using single gRNA and qPCR and immunoblotting
assays. 4) Predict and validate phenotypic rescue in a human iPSC-neuronal model of Fragile X Syndrome.
Finally, we will assess the predictive value of the functional fingerprints developed in Aim 3 to generate a
candidate list of gene targets that can rescue (suppress) phenotypic parameters we have identified in a human
cellular model of the neurodevelopmental disorder, Fragile X syndrome. We will modulate the expression of
these potential genetic suppressors with CRISPRn in FMR1-/y iPSC-neurons and benchmark phenotypic rescue
using genetic re-introduction of FMRP. Successful completion of the proposed work has potential to yield a new
understanding of the molecular architecture of human neurophysiology and a platform for novel therapeutic
target identification focused on the molecular basis for modulation of neurophysiological disease mechanisms.
项目摘要
神经系统疾病会影响全球数百万患者,代表了主要的未满足医疗需求。最近的
与开发新的中枢神经系统(CNS)治疗的新类别相比
其他疾病区域。 CNS药物发现过程中的一个关键障碍是需要细胞模型,
测定和可以更可靠地评估与疾病相关的神经生理参数的技术
在单个神经元和突触的水平上的人类细胞环境,并具有捕获的量表和分辨率
这些系统的复杂性和可变性。我们建议通过整合三个
关键技术 - (i)人类神经元中全光生理学的高吞吐量Britetm平台,该平台
每天每天约500,000个神经元,达到单电池和单一电势分辨率
乐器; (ii)使用CRISPR核酸酶破坏基因功能的基因组筛选; (iii)机器学习
指纹的鉴定,代表具有单细胞分辨率的复杂生理表型。这
第二阶段计划包括四个关键目标。 1)在人类神经元中建立CRISPRN筛查条件。
我们将选择20个候选靶基因,包括癫痫和神经发育目标以进一步优化
测定条件与全光生理学表型兼容,包括遗传破坏的时间和
CRISPRN/GRNA成分的浓度有效地敲低基因靶标。 2)建立深度学习 -
用于单细胞表型的功率分析工具。我们将使用深层神经网络学习紧凑的矢量
药理干预后神经元行为的表示,利用了我们的单细胞分辨率
神经元种群中的测量和适应性潜在异质性。 3)识别遗传
使用全基因组CRISPRN屏幕的神经元功能调节剂。我们将结合实验
AIMS 1-2中建立的条件和分析模型,以执行全基因组CRISPRN屏幕(> 18,000
基因靶标)具有野生型人IPSC兴奋性神经元中的Arry GRNA库。我们将识别基因
下调下调的目标导致功能参数发生重大变化。潜在的命中和特异性
使用单个GRNA和QPCR和免疫印迹将在独立的回合中确认目标敲低
测定。 4)预测并验证脆弱X综合征的人IPSC-神经元模型中的表型救援。
最后,我们将评估AIM 3中开发的功能指纹的预测值,以生成A
我们在人类中确定的可以营救(抑制)表型参数的基因靶标的候选列表
神经发育障碍的细胞模型,脆弱的X综合征。我们将调节
这些潜在的遗传补充剂在FMR1-/Y IPSC-神经元和基准表型救援中使用CRISPRN
使用FMRP的遗传重新引入。成功完成拟议的工作有可能产生新的
了解人类神经生理学的分子结构和新型治疗平台
靶标识别集中于分子基础,以调节神经生理疾病机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steve John Ryan其他文献
Steve John Ryan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Genetically-Encoded, Non-Invasive and Wireless Modulation of Calcium Dynamics in Astrocytes With Spatiotemporal Precision and Depth
具有时空精度和深度的星形胶质细胞钙动态的基因编码、非侵入性无线调节
- 批准号:
10562265 - 财政年份:2023
- 资助金额:
$ 172.19万 - 项目类别:
Investigating the interactions of auxillary subunits with the Nav1.5 channel
研究辅助亚基与 Nav1.5 通道的相互作用
- 批准号:
10678156 - 财政年份:2023
- 资助金额:
$ 172.19万 - 项目类别:
Prefrontal circuit mechanisms of repetitive transcranial magnetic stimulation
重复经颅磁刺激的前额电路机制
- 批准号:
10649292 - 财政年份:2023
- 资助金额:
$ 172.19万 - 项目类别: