Deep Learning Approaches to Detect Glaucoma and Predict Progression from Spectral Domain Optical Coherence Tomography
通过谱域光学相干断层扫描检测青光眼并预测进展的深度学习方法
基本信息
- 批准号:10055661
- 负责人:
- 金额:$ 11.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAffectAgeAmericanArtificial IntelligenceAwardBiometryBlindnessCaringCharacteristicsClinicClinicalComputational TechniqueCorneaDataData SetDecision MakingDetectionDevelopmentDiagnosisDiseaseDisease ProgressionEngineeringEnsureEvaluationEyeEye diseasesFrequenciesGlaucomaImageImaging TechniquesIndividualLearningLengthMeasurementMeasuresMedicineMentorsModelingMonitorOphthalmologyOptic DiskOptical Coherence TomographyOpticsParticipantPatient CarePatientsPerformancePhasePopulationPrimary Open Angle GlaucomaProbabilityProgressive DiseaseRaceResearchResearch PersonnelRetinaScanningSeveritiesSeverity of illnessSouth KoreaStandardizationStructureStructure-Activity RelationshipSupervisionTechniquesTextureThickThinnessThree-Dimensional ImageThree-Dimensional ImagingTrainingTranslatingUnited StatesUniversitiesVisionVisual FieldsVisualizationWidthWorkbasecareer developmentclinical carecollegecomputer sciencedeep learningexperiencefield studyimaging modalityimprovedimproved outcomeindividual patientlarge datasetslegally blindmaculamultidisciplinarypredictive modelingpreservationresearch clinical testingretinal nerve fiber layersexskillsstandard measurethree dimensional structuretomographytool
项目摘要
Project Abstract / Summary
Primary open angle glaucoma (POAG) is a leading cause of blindness in the United States and worldwide. It is
estimated that over 2.2 million Americans suffer from POAG and that over 130,000 are legally blind from the
disease. As the population ages, the number of people with POAG in the United States will increase to over 3.3
million in 2020 and worldwide to an estimated 111.8 million by 2040. POAG is a progressive disease associated
with characteristic functional and structural changes that clinicians use to diagnose and monitor the disease.
Over the past several years, spectral domain optical coherent tomography (SDOCT) has become the standard
tool for measuring structure in POAG. This 3D imaging modality provides a wealth of information about retinal
structure and POAG-related retinal layers. This large amount of data is hard for clinicians to interpret and use
effectively to help guide treatment decisions. Instead, summary metrics such as average layer thicknesses are
used to reduce SDOCT images to a handful of values. While these metrics are useful, they can be difficult to
interpret and they throwaway important information regarding voxel intensity and texture, relationships across
retinal layers, and the overall 3D structure of the retina. Relying too heavily on these metrics limits our ability to
gain a deeper understanding structural contributions to POAG, the relationship between structure and visual
function, and how structural (and functional) changes progress in POAG. Recent advances in artificial
intelligence and deep learning, however, offer new data-driven tools and techniques to interpret 3D SDOCT
images and learn from the large SDOCT datasets being collected in clinics around the world. This proposal will
apply state-of-the-art deep learning techniques to 3D SDOCT data in order to (1) develop more accurate
POAG detection tools, (2) reveal structure-function relationships, and (3) predict structural and
functional progression in POAG.
This proposal also details a training plan to help the PI transition from a postdoctoral scholar to an independent
researcher. The mentored phase of this award will be supervised by the primary mentor, Dr. Linda Zangwill, and
a multidisciplinary mentoring team including Dr. Robert Weinreb (Ophthalmology), Dr. David Kriegman
(Computer Science and Engineering), and Dr. Armin Schwartzman (Biostatistics). Performing the proposed
research, formal coursework, and mentored career development will the provide the PI with highly sought-
after skills and experience to help ensure a successful transition into independence.
项目摘要/总结
原发性开角型青光眼 (POAG) 是美国和全世界失明的主要原因。这是
据估计,超过 220 万美国人患有 POAG,超过 130,000 人因此而失明。
疾病。随着人口老龄化,美国患有POAG的人数将增加到3.3以上
到 2020 年,这一数字预计将达到 1.118 亿,到 2040 年,全球预计将达到 1.118 亿。POAG 是一种进行性疾病,与
临床医生用来诊断和监测疾病的特征性功能和结构变化。
在过去的几年里,谱域光学相干断层扫描 (SDOCT) 已成为标准
POAG 中测量结构的工具。这种 3D 成像方式提供了有关视网膜的丰富信息
结构和 POAG 相关的视网膜层。如此大量的数据对于临床医生来说很难解释和使用
有效地帮助指导治疗决策。相反,诸如平均层厚度之类的汇总指标是
用于将 SDOCT 图像减少到少数值。虽然这些指标很有用,但它们可能很难
解释并丢弃有关体素强度和纹理、之间关系的重要信息
视网膜各层以及视网膜的整体 3D 结构。过度依赖这些指标限制了我们的能力
更深入地了解 POAG 的结构贡献、结构与视觉之间的关系
功能,以及结构(和功能)如何改变 POAG 的进展。人工合成的最新进展
然而,智能和深度学习提供了新的数据驱动工具和技术来解释 3D SDOCT
图像并从世界各地诊所收集的大型 SDOCT 数据集中学习。该提案将
将最先进的深度学习技术应用于 3D SDOCT 数据,以便 (1) 开发更准确的
POAG 检测工具,(2) 揭示结构-功能关系,(3) 预测结构和功能
POAG 的功能进展。
该提案还详细介绍了帮助PI从博士后学者过渡到独立学者的培训计划。
研究员。该奖项的指导阶段将由主要导师 Linda Zangwill 博士和
多学科指导团队,包括 Robert Weinreb 博士(眼科)、David Kriegman 博士
(计算机科学与工程)和 Armin Schwartzman 博士(生物统计学)。执行建议的
研究、正式课程作业和指导的职业发展将为 PI 提供备受追捧的-
拥有技能和经验,以帮助确保成功过渡到独立。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Christopher其他文献
Mark Christopher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Christopher', 18)}}的其他基金
Deep Learning Approaches to Detect Glaucoma and Predict Progression from Spectral Domain Optical Coherence Tomography
通过谱域光学相干断层扫描检测青光眼并预测进展的深度学习方法
- 批准号:
10799087 - 财政年份:2023
- 资助金额:
$ 11.73万 - 项目类别:
Deep Learning Approaches to Detect Glaucoma and Predict Progression from Spectral Domain Optical Coherence Tomography
通过谱域光学相干断层扫描检测青光眼并预测进展的深度学习方法
- 批准号:
10219269 - 财政年份:2020
- 资助金额:
$ 11.73万 - 项目类别:
相似国自然基金
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
年龄结构和空间分布对艾滋病的影响:建模、分析与控制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机噪声影响下具有年龄结构的布鲁氏菌病动力学行为与最优控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 11.73万 - 项目类别:
Project 3: 3-D Molecular Atlas of cerebral amyloid angiopathy in the aging brain with and without co-pathology
项目 3:有或没有共同病理的衰老大脑中脑淀粉样血管病的 3-D 分子图谱
- 批准号:
10555899 - 财政年份:2023
- 资助金额:
$ 11.73万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 11.73万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 11.73万 - 项目类别:
Arginase-1 signaling after neonatal stroke
新生儿中风后精氨酸酶 1 信号转导
- 批准号:
10664501 - 财政年份:2023
- 资助金额:
$ 11.73万 - 项目类别: