Development of a Micro-ECoG Neuroprosthesis for Motor Rehabilitation in a Chronic Corticospinal Stroke Injury
开发用于慢性皮质脊髓中风损伤运动康复的微型 ECoG 神经假体
基本信息
- 批准号:10065528
- 负责人:
- 金额:$ 56.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-12-01 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAffectAnatomyAnimal ModelBehavioralBrainChronicClinicalCorticospinal TractsCoupledDataDevelopmentDevicesElectrodesElectrophysiology (science)FeedbackFoundationsFrequenciesFunctional ImagingFunctional disorderGoalsHandHumanImpairmentImplantIndustryInjuryIntentionInternal CapsuleInterventionKnowledgeLesionLimb structureLinkMacacaMagnetic Resonance ImagingMeasurementMeasuresMediatingMethodsMissionModelingMonkeysMotorMotor CortexMovementNational Institute of Neurological Disorders and StrokeOrthotic DevicesOutcomeParesisPatientsPerformancePharmacologyPhysiologyPlayPrimatesPublic HealthQuality of lifeRecoveryRecovery of FunctionRehabilitation therapyResearchRoboticsRoleSignal TransductionSiteSourceStrokeTechnologyTestingTherapeuticTranslationsUniversitiesWashingtonWorkbehavioral impairmentbrain computer interfacechronic strokeclinically significantfunctional gainfunctional restorationgray matterhaptic feedbackhemiparesisimprovedinjuredinnovationinsightmotor deficitmotor impairmentmotor recoverymotor rehabilitationmultimodalitynervous system disorderneuroprosthesisnonhuman primatenovelpilot trialpre-clinicalrecruitrehabilitation strategyrestorationstroke modelstroke patientstroke survivorstroke therapytoolwhite matterwhite matter injury
项目摘要
In rehabilitating chronic motor-impaired stroke survivors with a brain computer interface (BCI), there is a
fundamental gap in understanding how the brain changes with injury and in how a BCI can engage these
dynamics to induce a functional recovery. The current barrier is the absence of a primate model that can test a
BCI strategy in chronic stroke. The majority of animal models employ gray matter lesions, while the majority of
clinically significant strokes involve the deeper white matter. The long-term goal of this project is to restore
motor function by synergizing the patient's BCI rehabilitative strategy with their specific stroke-induced
pathophysiology. The overall objective of this proposal is to create a nonhuman primate model for stroke that
will examine the evolving physiology following a microvascular corticospinal tract (CST) lesion and test the
impact of a neuroprosthetic intervention for functional restoration in the chronic setting. The central hypothesis
is that BCI-driven motor rehabilitation for a CST injury will be effective when the control signals from the
unaffected hemisphere are paired with proprioceptive feedback. The rationale for this research is that the
animal model and the accrued scientific insights will create a mechanism-driven approach to neuroprosthetic
solutions for stroke. Guided by strong preliminary evidence, we will test the central hypothesis with the
following three specific aims: 1) Create a cortical electrode to enable multimodal measurements of the brain
before and after a microvascular lesion to the CST, 2) Define acute and chronic alterations in cortical
physiology and behavioral performance associated with a microvascular lesion to the CST, and 3) Restore
motor function in macaque monkey with chronic CST injury using BCI rehabilitation. Under the first aim we will
create a bihemispheric, MRI-invisible, micro-electrocorticographic (µECoG) implant that can measure the
cortical physiology of ipsilesional and contralesional motor cortex and enable functional and anatomical
magnetic resonance imaging. In the second aim, this implant, along with a new method for creating a
stereotactic lesion to the posterior limb of the internal capsule, will enable us to link the micro-scale cortical
electrophysiology with larger scale functional imaging as the brain changes from the central insult. Under the
third aim, the chronically paretic monkeys will be rehabilitated using signal sources from the contralesional
hemisphere. This project is innovative because it is a substantial departure from the status quo by expanding
the role the unaffected hemisphere and bihemispheric interactions can play in BCI-mediated rehabilitation.
The proposed research will be significant because the knowledge will create a critical bridge between motor
function, electrophysiology, and functional imaging, which will vastly improve the characterization of how the
cortical dynamics are perturbed with a white matter stroke and subsequently how these changes can be
targeted for a tailored neuroprosthetic intervention. Ultimately, this will inform the development of novel
treatments for stroke patients in the U.S.
在使用大脑计算机界面(BCI)恢复慢性运动障碍的中风存活时,有一个
了解大脑如何随伤害以及BCI如何参与这些的根本差距
诱导功能恢复的动力学。当前的障碍是缺乏可以测试A的私人模型
慢性中风的BCI策略。大多数动物模型员工灰质病变,而大多数
临床上重要的中风涉及更深的白质。该项目的长期目标是恢复
通过使患者的BCI康复策略协同其特定的中风引起的运动功能
病理生理学。该提案的总体目的是创建一种非人类的私人模型,以供行程
将检查微血管皮质脊髓束(CST)病变后不断发展的生理学
神经假体干预对慢性环境中功能恢复的影响。中心假设
当来自CST受伤的BCI驱动的电动机康复是否会在控制信号中有效
未受影响的半球与本体感受反馈配对。这项研究的理由是
动物模型和累积的科学见解将创建一种机制驱动的神经假体方法
中风解决方案。在强有力的初步证据的指导下,我们将测试中心假设
以下三个具体目的:1)创建一个皮层电极以实现大脑的多模式测量
微血管病变前后CST,2)定义皮质中的急性和慢性改变
与CST的微血管病变相关的生理学和行为表现,3)还原
使用BCI康复的慢性CST损伤,在猕猴中的运动功能。在第一个目标下,我们将
创建一个可以测量的双性化,可视MRI可视,微型皮质学(µECOG)植入物
ipsiles和对比运动皮质的皮质生理学,并启用功能和解剖学
磁共振成像。在第二个目标中,该植入物以及一种创建一个新方法
立体定向病变与内胶囊的后肢,将使我们能够将微尺度皮质联系起来
随着大脑从中央侮辱变化,具有较大规模的功能成像的电生理学。在
第三目的,使用对比度的信号源将慢性毛猴进行康复
半球。该项目具有创新性,因为它通过扩展是与现状的实质性不同
在BCI介导的康复中,未受影响的半球和Bihemisphere相互作用的作用可以起到作用。
拟议的研究将是重要的,因为知识将在电动机之间产生关键的桥梁
功能,电生理学和功能成像,这将大大提高如何表征
皮质动力学与白质中风一起干扰,随后如何变化
针对量身定制的神经假体干预措施。最终,这将为小说的发展提供信息
美国中风患者的治疗
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric CLAUDE Leuthardt其他文献
Eric CLAUDE Leuthardt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric CLAUDE Leuthardt', 18)}}的其他基金
Development of a Micro-ECoG Neuroprosthesis for Motor Rehabilitation in a Chronic Corticospinal Stroke Injury
开发用于慢性皮质脊髓中风损伤运动康复的微型 ECoG 神经假体
- 批准号:
10318158 - 财政年份:2017
- 资助金额:
$ 56.34万 - 项目类别:
Advancing Neurosurgical Neuronavigation Using Resting State MRI and Machine Learning
利用静息态 MRI 和机器学习推进神经外科神经导航
- 批准号:
10685402 - 财政年份:2017
- 资助金额:
$ 56.34万 - 项目类别:
Augmented Neurosurgical Navigation Software Using Resting State MRI
使用静息态 MRI 的增强神经外科导航软件
- 批准号:
10066314 - 财政年份:2017
- 资助金额:
$ 56.34万 - 项目类别:
MAPPING ELOQUENT CORTEX USING RESTING STATE CORTICAL PHYSIOLOGY
使用静息态皮质生理学绘制雄辩皮质图
- 批准号:
8256952 - 财政年份:2011
- 资助金额:
$ 56.34万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Disruption of spinal circuit early development after silencing En1/Foxp2 interneurons
沉默 En1/Foxp2 中间神经元后脊髓回路早期发育中断
- 批准号:
10752857 - 财政年份:2023
- 资助金额:
$ 56.34万 - 项目类别:
Copper Sensing in Uropathogenic Escherichia coli
尿路致病性大肠杆菌中的铜感应
- 批准号:
10604449 - 财政年份:2023
- 资助金额:
$ 56.34万 - 项目类别:
Contribution of Vitamin D Deficiency to Pathological Progression in Models of Cerebral Hypoperfusion
维生素 D 缺乏对脑低灌注模型病理进展的影响
- 批准号:
10725358 - 财政年份:2023
- 资助金额:
$ 56.34万 - 项目类别: