Advancing Neurosurgical Neuronavigation Using Resting State MRI and Machine Learning

利用静息态 MRI 和机器学习推进神经外科神经导航

基本信息

  • 批准号:
    10685402
  • 负责人:
  • 金额:
    $ 55.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-01-17 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

Abstract. Long-term survival of patients with glioblastomas (GBM) are associated with two competing priorities: 1) gross total resection and 2) preservation of the patient’s function. Stereotactic navigation, in which reconstructed magnetic resonance images (MRI) of the brain are used for real-time intraoperative anatomic guidance, has become an essential tool for tumor resection. Further, there are emerging insights that glioma- specific perturbations of the functional organization of the brain impact the patient’s survival. However, the current barrier is that there is no FDA approved navigation system that enables the surgeon to visualize the functional architecture of the brain and the impact a tumor has on the brain’s network organization to inform prognosis. Resting state functional MRI (rs-fMRI) has emerged as a powerful tool for mapping clinically relevant brain networks and defining critical glioma-neuronal interactions. rs-fMRI is highly efficient, task independent, and multiple resting state networks (RSNs) can be mapped simultaneously. With this in mind, the long-term goal of our research is to improve treatment, survival, and quality of life for patients with brain tumors by improving the identification of eloquent cortex and providing actionable metrics for survival prognosis to best tailor a patient’s care. In our first Academic Industry Partnership between Washington University and Medtronic we were extremely productive in creating an integrated brain-mapping navigation technology using rs-fMRI. Specifically, we created a robust image acquisition/analysis pipeline that includes pre-processing of raw data, quality control analytics, and clinical validation demonstrating superior performance over task-based fMRI. We have also been leaders in deriving prognostic radiomic biomarkers from rs-fMRI. In this continuation, we will build on these successes. The overall objective is to create advanced rs-fMRI machine learning (ML) tools to more efficiently and accurately define functional cortex and provide preoperative prognostic metrics of survival as a comprehensive surgical/care navigation system. We have the expertise, infrastructure, and data, to advance rs- fMRI to be a powerful tool for neurosurgical decision support. The proposal entails three specific aims: 1) Advance an ML algorithm to enable more accurate and data efficient rs-fMRI brain-mapping software, 2) Create an rs-fMRI ML algorithm to preoperatively predict survival in glioblastoma (GBM) patients, and 3) Validate impact of mapping and prognostic algorithms on clinical decision making in prospective feasibility clinical trial. The expected outcome of this work will be an integrated imaging/surgical navigation technology using rs-fMRI for clinical decision support with defined performance, clinical validation, and a regulatory path for FDA clearance. Thus, this proposal is innovative because 1) the software will map networks with substantially shorter image acquisition times, thus enabling more widespread adoption and 2) provide critical pre-operative survival insights to inform surgical decisions. This work is significant because it will disseminate technology that fundamentally enhances more tailored approaches to improving patient outcomes and quality of life.
抽象的。胶质母细胞瘤(GBM)患者的长期生存与两个相互竞争的优先级相关: 1)总切除术和2)保存患者的功能。立体定向导航,其中 大脑的重建磁共振图像(MRI)用于实时术中解剖 指导已成为肿瘤切除的必要工具。此外,有新兴的见解是神经胶质瘤 - 大脑功能组织的特定扰动会影响患者的生存。但是, 当前的障碍是没有FDA批准的导航系统可以使外科医生可视化 大脑的功能架构以及肿瘤对大脑网络组织的影响 预后。静止状态功能MRI(RS-FMRI)已成为绘制临床相关的强大工具 大脑网络并定义关键的神经胶质瘤 - 神经元相互作用。 RS-FMI高效,任务独立, 可以简单地映射多个静止状态网络(RSN)。考虑到这一点,长期目标 我们的研究是通过改善脑肿瘤患者的治疗,生存和生活质量 识别雄辩的皮质并提供可行的指标来生存预后,以最佳地量身定制 病人的护理。在华盛顿大学和Medtronic之间的第一个学术行业伙伴关系中,我们是 使用RS-FMRI创建集成的大脑映射导航技术,极其有效。具体来说, 我们创建了一个强大的图像采集/分析管道,其中包括原始数据的预处理,质量控制 分析和临床验证表明,与基于任务的功能磁共振成像相比,表现出色。我们也去过 从RS-FMRI中得出预后的放射线生物标志物的领导者。在这种延续中,我们将以这些为基础 成功。总体目标是创建高级RS-FMRI机器学习(ML)工具以更有效 并准确定义功能性皮质,并提供术前预后指标作为一种 全面的外科/护理导航系统。我们拥有专业知识,基础架构和数据,以提高Rs- fMRI成为神经外科决策支持的强大工具。该提案需要三个具体目标:1) 推进ML算法以启用更准确和数据有效的RS-FMRI脑映射软件,2)创建 一种RS-FMRI ML算法,用于术前预测胶质母细胞瘤(GBM)患者的存活率,3)验证撞击 预期可行性临床试验中临床决策的映射和预后算法。 这项工作的预期结果将是使用RS-FMRI的集成成像/外科导航技术 临床决策支持,具有定义的性能,临床验证和FDA清除的调节路径。 那就是该提案具有创新性 获取时间,从而实现更多的宽度采用和2)提供关键的术前生存见解 为手术决定提供信息。这项工作很重要,因为它将传播从根本上 增强了更多量身定制的方法来改善患者的结果和生活质量。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structural gray matter alterations in glioblastoma and high-grade glioma-A potential biomarker of survival.
  • DOI:
    10.1093/noajnl/vdad034
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Resting State Functional MR Imaging of Language Function.
  • DOI:
    10.1016/j.nic.2020.09.005
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Lee JJ;Luckett P;Fakhri MM;Leuthardt EC;Shimony JS
  • 通讯作者:
    Shimony JS
Preoperative functional connectivity by magnetic resonance imaging for refractory neocortical epilepsy.
通过磁共振成像对难治性新皮质癫痫进行术前功能连接。
  • DOI:
    10.1101/2023.01.10.23284374
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Johnson,EmilyA;Lee,JohnJ;Hacker,CarlD;Park,KiYun;Rustamov,Nabi;Daniel,AndyGS;Shimony,JoshuaS;Leuthardt,EricC
  • 通讯作者:
    Leuthardt,EricC
Machine Learning Analytics of Resting-State Functional Connectivity Predicts Survival Outcomes of Glioblastoma Multiforme Patients.
  • DOI:
    10.3389/fneur.2021.642241
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Lamichhane B;Daniel AGS;Lee JJ;Marcus DS;Shimony JS;Leuthardt EC
  • 通讯作者:
    Leuthardt EC
The State of Resting State Networks.
  • DOI:
    10.1097/rmr.0000000000000214
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Seitzman, Benjamin A;Snyder, Abraham Z;Shimony, Joshua S
  • 通讯作者:
    Shimony, Joshua S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric CLAUDE Leuthardt其他文献

Eric CLAUDE Leuthardt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric CLAUDE Leuthardt', 18)}}的其他基金

Development of a Micro-ECoG Neuroprosthesis for Motor Rehabilitation in a Chronic Corticospinal Stroke Injury
开发用于慢性皮质脊髓中风损伤运动康复的微型 ECoG 神经假体
  • 批准号:
    10318158
  • 财政年份:
    2017
  • 资助金额:
    $ 55.35万
  • 项目类别:
Augmented Neurosurgical Navigation Software Using Resting State MRI
使用静息态 MRI 的增强神经外科导航软件
  • 批准号:
    10066314
  • 财政年份:
    2017
  • 资助金额:
    $ 55.35万
  • 项目类别:
Development of a Micro-ECoG Neuroprosthesis for Motor Rehabilitation in a Chronic Corticospinal Stroke Injury
开发用于慢性皮质脊髓中风损伤运动康复的微型 ECoG 神经假体
  • 批准号:
    10065528
  • 财政年份:
    2017
  • 资助金额:
    $ 55.35万
  • 项目类别:
MAPPING ELOQUENT CORTEX USING RESTING STATE CORTICAL PHYSIOLOGY
使用静息态皮质生理学绘制雄辩皮质图
  • 批准号:
    8256952
  • 财政年份:
    2011
  • 资助金额:
    $ 55.35万
  • 项目类别:

相似国自然基金

采用复合防护材料的水下多介质耦合作用下重力坝抗爆机理研究
  • 批准号:
    51779168
  • 批准年份:
    2017
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
采用数值计算求解一类半代数系统全部整数解
  • 批准号:
    11671377
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
采用pinball loss的MEE算法研究
  • 批准号:
    11401247
  • 批准年份:
    2014
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
采用路径算法和管网简化的城市内涝近实时模拟
  • 批准号:
    41301419
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
采用ε近似算法的盲信道均衡
  • 批准号:
    60172058
  • 批准年份:
    2001
  • 资助金额:
    16.0 万元
  • 项目类别:
    面上项目

相似海外基金

Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
  • 批准号:
    10831226
  • 财政年份:
    2023
  • 资助金额:
    $ 55.35万
  • 项目类别:
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
  • 批准号:
    10688715
  • 财政年份:
    2023
  • 资助金额:
    $ 55.35万
  • 项目类别:
High-Resolution Flow Imaging of Optic Nerve Head and Retrolaminar Microvascular Circulation
视神经乳头和层后微血管循环的高分辨率血流成像
  • 批准号:
    10649225
  • 财政年份:
    2023
  • 资助金额:
    $ 55.35万
  • 项目类别:
Ten-Fold Resolution Boost for Magnetic Particle Imaging with Applications to Rapid, Non-Invasive Imaging of CAR-T Cell Therapies, Stroke, GI Bleeds and Pulmonary Embolisms
磁粒子成像分辨率提高十倍,应用于 CAR-T 细胞疗法、中风、胃肠道出血和肺栓塞的快速、非侵入性成像
  • 批准号:
    10714021
  • 财政年份:
    2023
  • 资助金额:
    $ 55.35万
  • 项目类别:
Modeling and Analysis of the Spatio-Temporal Dynamics of the Mitochondrial Network
线粒体网络时空动力学的建模与分析
  • 批准号:
    10568586
  • 财政年份:
    2023
  • 资助金额:
    $ 55.35万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了