1/2 Leveraging electronic health records for pharmacogenomics of psychiatric disorders
1/2 利用电子健康记录进行精神疾病的药物基因组学研究
基本信息
- 批准号:10064583
- 负责人:
- 金额:$ 42.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:Academic Medical CentersAddressAffectAntidepressive AgentsAntipsychotic AgentsBiologyCase-Control StudiesClinicalClinical InformaticsClozapineCodeConsumptionCoupledDNADataDevelopmentDiscriminationDiseaseEffectivenessElectroconvulsive TherapyElectronic Health RecordEngineeringFunctional disorderGeneral HospitalsGenerationsGeneticGenetic VariationGenetic studyGenomicsGenotypeGoalsHealth systemHealthcare SystemsHeritabilityHospitalsIndividualInterventionInvestigationLabelLeadLinkLiteratureMachine LearningMajor Depressive DisorderMassachusettsMeasuresMedical GeneticsMental disordersMethodsModelingMorbidity - disease rateOutcomePatient TriagePatientsPharmaceutical PreparationsPharmacogenomicsPharmacologyPharmacotherapyPhenotypePopulationPrevalenceProbabilityPsychiatric therapeutic procedurePsychiatryPublic HealthPublishingReportingResearchResearch PersonnelResistanceRiskRodentRoleSample SizeSamplingSchizophreniaSequential TreatmentSiteStructureSuicide attemptSupervisionSystemTherapeuticTimeTreatment FailureTreatment StepTreatment outcomeVariantWorkadverse outcomealgorithmic methodologiesbasebiobankbiomedical resourceclinical predictorsclinical riskcohortcostdesigndeterminants of treatment resistanceeffective therapyefficacious treatmentgenetic associationgenome wide association studygenomic datagenomic predictorsgenomic variationhigh riskimprovedin silicomortalityneuropsychiatric disorderpersonalized interventionportabilitypredictive modelingpreventprospectiverecruitresponserisk stratificationrisk variantsuccesssymptomatic improvementtherapy resistanttraittreatment responsetreatment risktreatment strategytreatment trial
项目摘要
Schizophrenia (SCZ) and major depressive disorder (MDD) are highly heritable, debilitating
diseases with lifetime prevalences of ~1% and 15%, respectively. Both disorders carry substantial
morbidity and mortality and are associated with severe societal and personal costs. Despite the availability
of efficacious treatments for both disorders, ~1/3 of individuals will not achieve symptomatic improvement
even after multiple rounds of medication. Identifying individuals at greater risk for such treatment
nonresponse, or treatment resistance, could facilitate more targeted interventions for these individuals.
A burgeoning literature has identified genomic variation associated with treatment response. IN
particular, antidepressant response has been suggested to be highly heritable; convergent data from
rodent studies likewise suggest that antipsychotic and antidepressant response phenotypes are influenced
by genetic variation. However, treatment studies to date have had minimal success in identifying variants
associated with psychotropic response, likely as a result of limited sample sizes: prior efforts required
sequential treatment trials and prospective assessment to characterize outcomes. Longitudinal electronic
health records (EHR) data provide an opportunity to efficiently characterize treatment response in many
individuals in real-world settings. Coupled with large and expanding biobanks, these cohorts allow for low-
cost, large-scale genomic studies that finally achieve sufficient power to detect realistic effect sizes.
The investigators now propose to apply these approaches to the EHRs of two large regional health
systems, each linked to a large biobank, to investigate treatment resistance in SCZ and MDD. They will
apply canonical indicators of treatment resistance - clozapine treatment for SCZ, and electroconvulsive
therapy (ECT) for MDD - to identify coded and uncoded clinical features associated with high probability of
treatment resistance in EHR data. These predictors will themselves provide a useful baseline for
identifying high risk individuals. Then, they will apply these to study the entire affected population of each
biobank, extending existing genomic data with additional genome-wide association, yielding more than
26,000 antidepressant-treated individuals and 2,500 antipsychotic-treated individuals. Rather than simply
conducting a case-control study, they will examine treatment resistance as a quantitative trait, applying a
method developed by the investigators and shown to substantially increase power for such traits.
The project combines expertise in clinical informatics, machine learning, and analysis of large
scale genomics, as well as domain-specific expertise in psychiatric treatment resistance. Spanning two
distinct health systems, the algorithms and methods developed have maximal portability, facilitating next-
step investigations. Successful identification of risk variants will facilitate efforts at clinical risk stratification
as well as investigation of the biology underlying treatment resistance.
精神分裂症(SCZ)和主要抑郁症(MDD)高度遗传,令人衰弱
终生患病率分别为约1%和15%的疾病。两种疾病都有大量
发病率和死亡率,与严重的社会和个人成本有关。尽管有可用性
两种疾病的有效治疗方法,〜1/3的个体将无法实现症状改善
即使经过多轮药物。确定这种治疗风险更大的人
无响应或抗治疗性可以促进这些人更有针对性的干预措施。
新兴文献已经确定了与治疗反应相关的基因组变异。在
特别是,抗抑郁反应被认为是高度遗传的。收敛数据
啮齿动物研究同样表明抗精神病药和抗抑郁反应表型受到影响
通过遗传变异。但是,迄今为止的治疗研究在识别变体方面取得了最小的成功
与精神反应有关,可能是由于样本量有限的结果:所需的先前努力
顺序治疗试验和前瞻性评估以表征结果。纵向电子
健康记录(EHR)数据提供了有效表征许多治疗反应的机会
在现实世界中的个人。加上大型和扩大的生物库,这些同类群体可使
成本,大规模的基因组研究,最终获得足够的能力来检测逼真的效果大小。
研究人员现在建议将这些方法应用于两个大区域健康的EHR
系统,每个系统都与大型生物库相连,以研究SCZ和MDD中的治疗耐药性。他们会的
应用耐药性的规范指标 - 氯氮平治疗SCZ和电惊厥
MDD的治疗(ECT) - 确定与高可能性相关的编码和未编码的临床特征
EHR数据中的治疗耐药性。这些预测因素本身将为
确定高风险个人。然后,他们将应用这些来研究每个人的整个受影响的人群
生物库,扩展现有的基因组数据,并具有额外的全基因组关联,产生超过
26,000个抗抑郁药治疗的个体和2,500个抗精神病药物治疗的个体。而不是简单
进行病例对照研究,他们将研究抗药性作为定量性状,应用A
研究人员开发的方法并证明可以大大增加此类特征的能力。
该项目结合了临床信息学,机器学习和大型分析方面的专业知识
比例基因组学以及精神病治疗抗性的领域特定专业知识。跨越两个
独特的卫生系统,开发的算法和方法具有最大的可移植性,促进了接下来的
步骤调查。成功识别风险变异将有助于临床风险分层的努力
以及对生物学基础治疗耐药性的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROY H. Perlis其他文献
ROY H. Perlis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROY H. Perlis', 18)}}的其他基金
Characterization of schizophrenia liability genes in models of human microglial synaptic pruning
人类小胶质细胞突触修剪模型中精神分裂症易感基因的表征
- 批准号:
10736092 - 财政年份:2023
- 资助金额:
$ 42.13万 - 项目类别:
Depression, Isolation, and Social Connectivity Online (DISCO)
抑郁、孤立和在线社交联系 (DISCO)
- 批准号:
10612642 - 财政年份:2022
- 资助金额:
$ 42.13万 - 项目类别:
Data-driven subtyping in major depressive disorder
重度抑郁症的数据驱动亚型
- 批准号:
10393687 - 财政年份:2021
- 资助金额:
$ 42.13万 - 项目类别:
Data-driven subtyping in major depressive disorder
重度抑郁症的数据驱动亚型
- 批准号:
10580741 - 财政年份:2021
- 资助金额:
$ 42.13万 - 项目类别:
Data-driven subtyping in major depressive disorder
重度抑郁症的数据驱动亚型
- 批准号:
10211310 - 财政年份:2021
- 资助金额:
$ 42.13万 - 项目类别:
Patient-derived Models of Synaptic Pruning in Schizophrenia
精神分裂症患者衍生的突触修剪模型
- 批准号:
10614930 - 财政年份:2019
- 资助金额:
$ 42.13万 - 项目类别:
1/2 Leveraging electronic health records for pharmacogenomics of psychiatric disorders
1/2 利用电子健康记录进行精神疾病的药物基因组学研究
- 批准号:
10312110 - 财政年份:2019
- 资助金额:
$ 42.13万 - 项目类别:
Patient-derived Models of Synaptic Pruning in Schizophrenia
精神分裂症患者衍生的突触修剪模型
- 批准号:
9981011 - 财政年份:2019
- 资助金额:
$ 42.13万 - 项目类别:
Patient-derived Models of Synaptic Pruning in Schizophrenia
精神分裂症患者衍生的突触修剪模型
- 批准号:
10392927 - 财政年份:2019
- 资助金额:
$ 42.13万 - 项目类别:
Natural language processing for characterizing psychopathology
用于表征精神病理学的自然语言处理
- 批准号:
9254614 - 财政年份:2016
- 资助金额:
$ 42.13万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Improving Patient-Centered Decision-Making for Stress Urinary Incontinence Treatment in Older Men
改善老年男性压力性尿失禁治疗中以患者为中心的决策
- 批准号:
10729838 - 财政年份:2023
- 资助金额:
$ 42.13万 - 项目类别:
Improving medication adherence and disease control for patients with multimorbidity: the role of price transparency tools
提高多病患者的药物依从性和疾病控制:价格透明度工具的作用
- 批准号:
10591441 - 财政年份:2023
- 资助金额:
$ 42.13万 - 项目类别:
Learning Precision Medicine for Rare Diseases Empowered by Knowledge-driven Data Mining
通过知识驱动的数据挖掘学习罕见疾病的精准医学
- 批准号:
10732934 - 财政年份:2023
- 资助金额:
$ 42.13万 - 项目类别:
Dynamic multimodal connectivity analysis of brain networks in focal epilepsy
局灶性癫痫脑网络的动态多模态连接分析
- 批准号:
10678514 - 财政年份:2023
- 资助金额:
$ 42.13万 - 项目类别:
Attentional Mechanisms of Cognitive Compensation in Subjective Cognitive Decline and AD Risk
主观认知下降和 AD 风险中认知补偿的注意机制
- 批准号:
10738600 - 财政年份:2023
- 资助金额:
$ 42.13万 - 项目类别: