Data-driven subtyping in major depressive disorder
重度抑郁症的数据驱动亚型
基本信息
- 批准号:10211310
- 负责人:
- 金额:$ 83.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-16 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAreaBiologicalBiologyCessation of lifeClassificationClinicalCodeCollaborationsDataData SetDementiaDevelopmentDiagnosticDimensionsDiseaseDisease remissionElectronic Health RecordEndocrine System DiseasesEngineeringEquilibriumEvidence based treatmentFunctional disorderHealth Care CostsHealth systemHeart DiseasesHeterogeneityHospitalsHumanIndividualInflammatory Bowel DiseasesMachine LearningMajor Depressive DisorderMalignant NeoplasmsManualsMeasuresMedicalMedicineMental DepressionMethodsModelingMood DisordersMorbidity - disease rateNational Institute of Mental HealthOutcomePatientsPerformancePhenotypePrevalencePublic HealthPublicationsQuality of lifeResearch PersonnelSelection for TreatmentsSeriesSubgroupSuicideSupervisionSymptomsSystemTherapeuticVariantWorkbasebiomarker identificationclinical investigationclinical subtypescohortdepressive symptomsdisorder subtypeexperienceineffective therapiesinnovationmachine learning methodmortalitymortality risknovel therapeuticspatient subsetsphenomenological modelsprecision medicinerisk stratificationstandard caresuccesstargeted treatmenttherapy resistanttreatment responsetreatment strategy
项目摘要
Abstract
Major depressive disorder contributes substantially to morbidity, mortality, and health care cost.
Standard treatments are ineffective for up to a third of patients, so new treatment options are needed
along with strategies to make more effective use of existing treatments. However, progress in
expanding therapeutic options has been hindered by heterogeneity in clinical presentation and course
of depression.
In other disorders such as inflammatory bowel disease, cancer, and dementia, identifying
disease subtypes has led to therapeutic discoveries. In major depressive disorder, efforts to identify
subtypes based on clinical observation have yielded limited success, primarily because of the lack of
availability of adequate cohorts for replication, and because those features most apparent to
clinicians may not be the most relevant for differentiating subgroups. Efforts to leverage large
electronic health record data sets for subtyping address some of these challenges, but standard
approaches may not yield human-interpretable features nor those with value in prediction.
The investigators have developed methods for engineering features that balance utility in
prediction with interpretability. Preliminary work by the investigators during a year of R56 support
yielding 4 publications demonstrates that this approach indeed yields coherent topics without
sacrificing predictive validity; electronic health records contain meaningful data that facilitates
identification of interpretable patient subgroups. The present study draws on very large cohorts of
individuals with major depression, defined by a validated algorithm, in electronic health records from
two health systems. It will first apply methods developed by the investigators to identify MDD
subtypes. These subtypes will then be examined in terms of predictive validity as well as
interpretability by clinicians.
The study builds on a productive collaboration between a team experienced in mood disorder
phenotyping and clinical investigation, analysis of large-scale longitudinal electronic health records,
and development and application of innovative methods in machine learning that yield interpretable
models rather than black boxes. Data-driven disease subtyping will facilitate clinically useful risk
stratification as well as biological study of mood disorders.
抽象的
重度抑郁症极大地增加了发病率、死亡率和医疗保健费用。
标准治疗对多达三分之一的患者无效,因此需要新的治疗选择
以及更有效地利用现有治疗方法的策略。然而,进展
临床表现和病程的异质性阻碍了扩大治疗选择
抑郁症。
在其他疾病中,如炎症性肠病、癌症和痴呆症,识别
疾病亚型导致了治疗的发现。在重度抑郁症中,努力识别
基于临床观察的亚型取得的成功有限,主要是因为缺乏
足够的队列可供复制,并且因为这些特征对于
临床医生对于区分亚组可能不是最相关的。努力发挥大杠杆作用
用于子分类的电子健康记录数据集解决了其中一些挑战,但标准
方法可能不会产生人类可解释的特征,也不会产生具有预测价值的特征。
研究人员开发了一些工程特征的方法,可以平衡实用性
具有可解释性的预测。研究人员在一年的 R56 支持期间所做的初步工作
产生 4 篇出版物表明,这种方法确实产生了连贯的主题,而无需
牺牲预测有效性;电子健康记录包含有意义的数据,有助于
识别可解释的患者亚组。本研究借鉴了非常大的群体
电子健康记录中通过经过验证的算法定义的重度抑郁症患者
两个卫生系统。它将首先应用研究人员开发的方法来识别 MDD
亚型。然后将根据预测有效性以及
临床医生的可解释性。
该研究建立在经历过情绪障碍的团队之间富有成效的合作基础上
表型分析和临床调查、大规模纵向电子健康记录分析、
机器学习创新方法的开发和应用,产生可解释的结果
模型而不是黑匣子。数据驱动的疾病亚型将促进临床有用的风险
情绪障碍的分层以及生物学研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROY H. Perlis其他文献
ROY H. Perlis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROY H. Perlis', 18)}}的其他基金
Characterization of schizophrenia liability genes in models of human microglial synaptic pruning
人类小胶质细胞突触修剪模型中精神分裂症易感基因的表征
- 批准号:
10736092 - 财政年份:2023
- 资助金额:
$ 83.22万 - 项目类别:
Depression, Isolation, and Social Connectivity Online (DISCO)
抑郁、孤立和在线社交联系 (DISCO)
- 批准号:
10612642 - 财政年份:2022
- 资助金额:
$ 83.22万 - 项目类别:
Data-driven subtyping in major depressive disorder
重度抑郁症的数据驱动亚型
- 批准号:
10393687 - 财政年份:2021
- 资助金额:
$ 83.22万 - 项目类别:
Data-driven subtyping in major depressive disorder
重度抑郁症的数据驱动亚型
- 批准号:
10580741 - 财政年份:2021
- 资助金额:
$ 83.22万 - 项目类别:
Patient-derived Models of Synaptic Pruning in Schizophrenia
精神分裂症患者衍生的突触修剪模型
- 批准号:
10614930 - 财政年份:2019
- 资助金额:
$ 83.22万 - 项目类别:
1/2 Leveraging electronic health records for pharmacogenomics of psychiatric disorders
1/2 利用电子健康记录进行精神疾病的药物基因组学研究
- 批准号:
10312110 - 财政年份:2019
- 资助金额:
$ 83.22万 - 项目类别:
Patient-derived Models of Synaptic Pruning in Schizophrenia
精神分裂症患者衍生的突触修剪模型
- 批准号:
9981011 - 财政年份:2019
- 资助金额:
$ 83.22万 - 项目类别:
1/2 Leveraging electronic health records for pharmacogenomics of psychiatric disorders
1/2 利用电子健康记录进行精神疾病的药物基因组学研究
- 批准号:
10064583 - 财政年份:2019
- 资助金额:
$ 83.22万 - 项目类别:
Patient-derived Models of Synaptic Pruning in Schizophrenia
精神分裂症患者衍生的突触修剪模型
- 批准号:
10392927 - 财政年份:2019
- 资助金额:
$ 83.22万 - 项目类别:
Natural language processing for characterizing psychopathology
用于表征精神病理学的自然语言处理
- 批准号:
9254614 - 财政年份:2016
- 资助金额:
$ 83.22万 - 项目类别:
相似国自然基金
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颜面缺损修复三维目标参照数据构建的区域权重非刚性配准算法研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 83.22万 - 项目类别:
Identifying and addressing missingness and bias to enhance discovery from multimodal health data
识别和解决缺失和偏见,以增强多模式健康数据的发现
- 批准号:
10637391 - 财政年份:2023
- 资助金额:
$ 83.22万 - 项目类别:
A breakthrough mobile phone technology that aids in early detection of COPD
突破性手机技术有助于早期发现慢性阻塞性肺病
- 批准号:
10760409 - 财政年份:2023
- 资助金额:
$ 83.22万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 83.22万 - 项目类别: