Coordination of high fidelity replication with mutagenic translesion synthesis
高保真复制与诱变跨损伤合成的协调
基本信息
- 批准号:10063001
- 负责人:
- 金额:$ 34.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-15 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:Antibiotic ResistanceArchaeaBacteriaBindingBiochemicalBiochemical GeneticsBiological AssayBiophysicsBypassClosure by clampCollaborationsCollectionComplexCoupledCryoelectron MicroscopyDNADNA RepairDNA biosynthesisDNA replication forkDNA-Directed DNA PolymeraseEscherichia coliEukaryotaFailureGeneticGenomeGenomic InstabilityGoalsHumanHydrophobicityIn VitroIndividualKnowledgeLesionMaintenanceMalignant NeoplasmsModelingMolecularMolecular Sieve ChromatographyMutagenesisMutationNucleic AcidsOrganismPathway interactionsPlayPolymeraseProcessProteinsResearchRoentgen RaysRoleSlideStructural ModelsStructureTechniquesTherapeuticTimebiophysical techniquesclinically significantcomplex IVdefined contributiongenetic approachhuman diseasein vivoinsightlight scatteringmangemolecular modelingnovelpathogenpathogenic microbeprogramsrepair functionrepairedreplicasesingle moleculestoichiometry
项目摘要
ABSTRACT
Failure to properly coordinate DNA replication with repair and potentially mutagenic translesion DNA synthesis
(TLS) contributes to mutations that underlie numerous human disease states, including cancers, as well as
antibiotic resistance and adaptation of clinically significant microbial pathogens. We use Escherichia coli as a
model to define fundamental mechanisms by which organisms mange the actions of their high fidelity
replicative DNA polymerase(s) (Pol) with those of low fidelity TLS Pols involved in lesion bypass and
mutagenesis. The process by which one Pol replaces another at a replication fork is referred to as `Pol
switching'. Sliding clamp proteins (DnaN or β in bacteria; PCNA in eukaryotes and archaea) play essential
roles in these switches. The generally accepted `toolbelt' model for Pol switching postulates that two different
Pols simultaneously bind separate hydrophobic clefts in the same β clamp to sequentially access the DNA. In
stark contrast with the toolbelt model, we recently determined that TLS Pols interact with each other and with
the Pol III replicase, and while the mechanistic contributions of these interactions are currently unknown, we
nevertheless demonstrated that Pol-Pol interactions are absolutely required for Pol switching in vitro and in
vivo. We have also identified several novel Pol-β clamp interactions important for Pol function. In Aim 1, we will
exploit our structural model of the Pol III-β clamp-Pol IV complex, as well as a wealth of biochemical,
biophysical, single molecule and genetic approaches to define for the first time in molecular detail the specific
contributions to switching of discrete Pol III-Pol IV and Pol IV-β clamp interactions. In Aim 2 we will exploit
structural insights we have gained regarding the Pol II-β clamp complex to define in molecular detail how the β
clamp manages Pol II processivity, proofreading and Pol III-Pol II and Pol II-Pol IV switching. In Aim 3, we will
use small angle X-ray scattering (SAXS), cryo-electron microscopy (cryo-EM), molecular modeling and a
combination of biochemical and biophysical approaches to structurally define how the different Pols interact
with each other and the β clamp, and how DNA influences these interactions. In addition, we will determine
the protein stoichiometry of the different Pol-β clamp and Pol-β clamp-Pol complexes using size exclusion
chromatography coupled with multi angle light scattering (SEC-MALS), which Pols interact with each other,
and whether or not these interactions are competitive. Taken together, results of these studies will provide
unprecedented insight into the molecular mechanisms by which E. coli manages and coordinately regulates
the actions of its different Pols during DNA replication, repair and TLS. Finally, our findings may identify critical
steps in these higher order regulatory networks that generalize to other bacteria and can be targeted by
chemotherapeutics to control replication and mutagenesis.
抽象的
未能与修复和潜在的诱变转移DNA合成正确协调DNA复制
(TLS)促进了众多人类疾病状态(包括癌症)的突变以及
抗生素耐药性和临床上显着的微生物病原体的适应性。我们将大肠杆菌用作
定义有机体来控制其高保真作用的基本机制的模型
复制性DNA聚合酶(S)(pol)具有低忠诚度TLS POL的病变旁路和
诱变。一个POL在复制叉上替换另一个POR的过程称为`p pol
交换'。滑动夹具蛋白(细菌中的DNAN或β;真核生物中的PCNA和古细菌)发挥必不可少的
这些开关中的角色。普遍接受的“工具面”模型用于切换的假设是两个不同的
POLS在相同的β夹具中仅结合单独的疏水性裂缝,以顺序访问DNA。
与工具面模型形成鲜明对比,我们最近确定TLS POLS相互相互作用,并与
Pol III复制酶,尽管这些相互作用的机械贡献目前尚不清楚,但我们
然而,表明POL POL相互作用是绝对必需的
体内。我们还确定了几种对于POL功能很重要的新型POL-β夹具相互作用。在AIM 1中,我们将
利用我们的pol III-β夹具夹IV复合物以及大量生化的结构模型
生物物理,单分子和遗传方法首次定义分子细节
离散Pol III-POL IV和POL IV-β夹具相互作用的切换的贡献。在AIM 2中,我们将利用
我们获得了有关Pol II-β夹具复合物的结构见解,以分子细节定义β
夹具管理POL II的加工性,校对和Pol III-POL II和POL II-POL IV转换。在AIM 3中,我们将
使用小角度X射线散射(SAXS),冷冻电子显微镜(Cryo-EM),分子建模和A
生化和生物物理方法的结合结构上定义了不同的pol相互作用
彼此和β夹具,以及DNA如何影响这些相互作用。此外,我们将确定
使用尺寸排除的不同POL-β夹和Pol-β夹具配合物的蛋白质化学计量法
色谱与多角度光散射(SEC-MALS)相互作用,彼此相互作用,
这些互动是否具有竞争力。综上所述,这些研究的结果将提供
大肠杆菌管理和协调调节的分子机制的前所未有的见解
在DNA复制,修复和TLS期间,其不同的pol的作用。最后,我们的发现可能确定关键
在这些高阶监管网络中,该网络推广到其他细菌,可以针对
化学治疗药以控制复制和诱变。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alba Guarne其他文献
Alba Guarne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alba Guarne', 18)}}的其他基金
Coordination of high fidelity replication with mutagenic translesion synthesis
高保真复制与诱变跨损伤合成的协调
- 批准号:
10305663 - 财政年份:2019
- 资助金额:
$ 34.98万 - 项目类别:
相似国自然基金
嗜热古细菌淀粉普鲁兰酶双功能催化机制的解析与水解活性的定向进化
- 批准号:31671801
- 批准年份:2016
- 资助金额:63.0 万元
- 项目类别:面上项目
古细菌CCC1家族铁/锰离子跨膜转运蛋白的结构生物学研究
- 批准号:31200550
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
古细菌aDim2p、a/eIF2和核糖体30S亚基之间相互作用分子机制的初步研究
- 批准号:31070659
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
嗜热古细菌麦芽糖基淀粉酶催化异黄酮转糖基化反应机理的研究
- 批准号:31000760
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
古菌Sulfolobus tokodaii甘油醛脱氢酶及其对非磷酸化Entner-Doudoroff糖酵解代谢的调控机制
- 批准号:30900039
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanism of Translation Initiation on Leaderless mRNAs
无领导者 mRNA 的翻译起始机制
- 批准号:
10593807 - 财政年份:2022
- 资助金额:
$ 34.98万 - 项目类别:
The mycobiota, bone marrow transplantation, and clinical outcomes
真菌群、骨髓移植和临床结果
- 批准号:
10303678 - 财政年份:2021
- 资助金额:
$ 34.98万 - 项目类别:
The mycobiota, bone marrow transplantation, and clinical outcomes
真菌群、骨髓移植和临床结果
- 批准号:
10415200 - 财政年份:2021
- 资助金额:
$ 34.98万 - 项目类别:
The Function of Small RNA-Based viral Defense System in E. coli
大肠杆菌中基于小RNA的病毒防御系统的功能
- 批准号:
10388674 - 财政年份:2021
- 资助金额:
$ 34.98万 - 项目类别: