Mechanism of carbon skeleton formation in molybdenum cofactor biosynthesis
钼辅因子生物合成中碳骨架形成机制
基本信息
- 批准号:10058693
- 负责人:
- 金额:$ 45.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAddressAffectAnabolismAntibioticsBacteriaBacterial InfectionsBiochemicalBiological AssayBrainC-terminalCatalysisCessation of lifeChildhoodChronicCoenzymesCombined molybdoflavoprotein enzyme deficiencyCommunicable DiseasesComplexDevelopmentDiseaseElectron Nuclear Double ResonanceEnterobacteriaceaeEnvironmentEnzymesFamilyFoundationsFundingFutureGenesGoalsGrowthGuanineGuanosineHumanHypoxiaIndividualInheritedKnowledgeMutationNutrientOrganismOxidation-ReductionPathway interactionsPatientsPeptidesPeriodicityPharmacologyProteinsPublic HealthReactionRecurrenceResearchResistanceRestSeveritiesSiteStructureTailTestingVertebral columnX-Ray Crystallographyacute symptombasebiophysical techniquescarbon skeletonchronic infectioncofactorcombatelectron donorenzyme mechanismgut microbiotahuman diseaseinflammatory disease of the intestineinhibitor/antagonistinsightloss of function mutationmolybdenum cofactornovel therapeuticspathogenpathogenic bacteriapyranopterintherapeutic developmenttripolyphosphate
项目摘要
Project Summary/Abstract
Molybdenum cofactor (Moco) is a redox cofactor found in almost all organisms. In humans, it is essential for
normal brain development, and mutations in Moco biosynthetic genes cause the fatal and currently incurable
disease, Moco deficiency (MoCD). In pathogenic bacteria, Moco is essential for their growth under hypoxic and
nutrient limiting environments, and therefore essential for pathogen persistence in mammalian hosts. Chronic
bacterial infections are resistant to many antibiotics and cause the recurrence of acute symptoms. However, the
development of therapeutics against MoCD or antibiotics targeting Moco biosynthesis in pathogenic bacteria are
currently difficult due to our limited understanding of the mechanism of Moco biosynthesis. The long-term goal
of this project is to provide a mechanistic understanding of Moco biosynthesis in pathogenic bacteria as well as
in humans. The focus of the current application is the mechanism of two enzymes (MoaA and MoaC) responsible
for the formation of the pyranopterin structure of Moco from guanine 5'-triphosphate (GTP). While the catalytic
functions of MoaA and MoaC had remained ambiguous for >20 years, we recently demonstrated that MoaA
catalyzes the transformation of GTP into 3',8-cyclo-dihydro-GTP (3',8-cH2GTP), while MoaC catalyzes the
conversion of 3',8-cH2GTP to cPMP. In this application, we will investigate the catalytic mechanisms of MoaA
and MoaC in both humans and bacteria through the following three Aims. In Aim 1, the redox function of 4Fe-4S
clusters in MoaA will be investigated both in the resting state and during turnover to address one of the key
unsolved mysteries of the radical SAM enzyme mechanisms. In Aim 2, the function of the C-terminal tail of MoaA
and the mechanism of peptide rescue of MoCD-causing mutations will be investigated through NMR, X-ray
crystallography and biochemical assays using bacterial and human enzymes. In Aim 3, we will test a covalent
and non-covalent mechanisms for MoaC catalysis and investigate the generality of mechanism-based inhibition
of bacterial and human enzymes. The proposed research is significant because it will provide mechanistic
insights into the formation of the Moco backbone and the scientific basis for future development of Moco
biosynthesis inhibitors and novel therapeutics to treat MoCD.
项目摘要/摘要
钼辅因子(MOCO)是几乎所有生物体中发现的氧化还原辅因子。在人类中,这对于
正常的大脑发育和Moco生物合成基因的突变会导致致命且目前无法治愈
疾病,MOCO缺乏症(MOCD)。在致病性细菌中,Moco对于低氧和低氧的生长至关重要
营养限制环境,因此对于哺乳动物宿主的病原体持久性至关重要。慢性的
细菌感染对许多抗生素具有抗性,并引起急性症状的复发。但是,
针对靶向MOCO生物合成的致病细菌中的MOCD或抗生素的疗法开发是
由于我们对MoCO生物合成机制的理解有限,目前很难。长期目标
这个项目的是对致病细菌中的Moco生物合成的机械理解
在人类中。当前应用的重点是两种酶(MOAA和MOAC)的机制
为了形成来自鸟嘌呤5'-三磷酸盐(GTP)的Moco的吡喃翅目结构。而催化
MOAA和MOAC的功能一直模棱两可超过20年,我们最近证明了MOAA
催化GTP转化为3',8-Cyclo-dihydro-GTP(3',8-CH2GTP),而MOAC则催化
将3',8-CH2GTP转换为CPMP。在此应用中,我们将研究MOAA的催化机制
通过以下三个目标,人类和细菌的MOAC和细菌。在AIM 1中,4FE-4S的氧化还原功能
MOAA中的集群将在静止状态和营业额期间进行调查,以解决关键之一
激进的SAM酶机制的未解决的奥秘。在AIM 2中,MOAA的C末端尾巴的功能
并将通过NMR,X射线研究肽挽救MOCD引起的突变的机制
使用细菌和人类酶的晶体学和生化测定。在AIM 3中,我们将测试共价
MOAC催化的非共价机制,并研究基于机制的抑制的一般性
细菌和人类酶。拟议的研究很重要,因为它将提供机械
对Moco主链的形成和Moco未来发展的科学基础的见解
生物合成抑制剂和新型治疗MOCD的疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenichi Yokoyama其他文献
Kenichi Yokoyama的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenichi Yokoyama', 18)}}的其他基金
Mechanism of cofactor biosynthesis required for chronic bacterial infection
慢性细菌感染所需辅因子生物合成机制
- 批准号:
8964738 - 财政年份:2015
- 资助金额:
$ 45.78万 - 项目类别:
Mechanism of cofactor biosynthesis required for chronic bacterial infection
慢性细菌感染所需辅因子生物合成机制
- 批准号:
9102114 - 财政年份:2015
- 资助金额:
$ 45.78万 - 项目类别:
Biosynthesis of antifungal nucleoside antibiotics
抗真菌核苷抗生素的生物合成
- 批准号:
10470406 - 财政年份:2015
- 资助金额:
$ 45.78万 - 项目类别:
Mechanism of carbon skeleton formation in molybdenum cofactor biosynthesis
钼辅因子生物合成中碳骨架形成机制
- 批准号:
10242931 - 财政年份:2015
- 资助金额:
$ 45.78万 - 项目类别:
Mechanism of carbon skeleton formation in molybdenum cofactor biosynthesis
钼辅因子生物合成中碳骨架形成机制
- 批准号:
10646323 - 财政年份:2015
- 资助金额:
$ 45.78万 - 项目类别:
Biosynthesis of antifungal nucleoside antibiotics
抗真菌核苷抗生素的生物合成
- 批准号:
10678669 - 财政年份:2015
- 资助金额:
$ 45.78万 - 项目类别:
Biosynthesis of peptidyl nucleoside antifungal antibiotics
肽基核苷抗真菌抗生素的生物合成
- 批准号:
8944844 - 财政年份:2015
- 资助金额:
$ 45.78万 - 项目类别:
Biosynthesis of antifungal nucleoside antibiotics-Undergrad research supplement
抗真菌核苷抗生素的生物合成-本科生研究补充
- 批准号:
10393814 - 财政年份:2015
- 资助金额:
$ 45.78万 - 项目类别:
Biosynthesis of antifungal nucleoside antibiotics
抗真菌核苷抗生素的生物合成
- 批准号:
10389266 - 财政年份:2015
- 资助金额:
$ 45.78万 - 项目类别:
Mechanism of carbon skeleton formation in molybdenum cofactor biosynthesis
钼辅因子生物合成中碳骨架形成机制
- 批准号:
10418782 - 财政年份:2015
- 资助金额:
$ 45.78万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Emerging mechanisms of viral gene regulation from battles between host and SARS-CoV-2
宿主与 SARS-CoV-2 之间的战斗中病毒基因调控的新机制
- 批准号:
10725416 - 财政年份:2023
- 资助金额:
$ 45.78万 - 项目类别:
Molecular Mechanisms that Control mRNA Decapping in Biological Condensates
控制生物浓缩物中 mRNA 脱帽的分子机制
- 批准号:
10577994 - 财政年份:2023
- 资助金额:
$ 45.78万 - 项目类别:
Actions of spiropyrimidinetriones against bacterial type II topoisomerases
螺嘧啶三酮对细菌 II 型拓扑异构酶的作用
- 批准号:
10750473 - 财政年份:2023
- 资助金额:
$ 45.78万 - 项目类别:
Novel Therapeutics for Heart Failure: Modified, Water-Soluble Caveolin-1 Scaffolding Domain Peptides with Improved Characteristics for Drug Development
心力衰竭的新型疗法:修饰的水溶性 Caveolin-1 支架结构域肽,具有改进的药物开发特性
- 批准号:
10599654 - 财政年份:2023
- 资助金额:
$ 45.78万 - 项目类别:
Selective CYP26 inhibitors for the oral treatment of recalcitrant nodular acne.
用于口服治疗顽固性结节性痤疮的选择性 CYP26 抑制剂。
- 批准号:
10822482 - 财政年份:2023
- 资助金额:
$ 45.78万 - 项目类别: