A novel approach to analyzing functional connectomics and combinatorial control in a tractable small-brain closed-loop system
一种在易处理的小脑闭环系统中分析功能连接组学和组合控制的新方法
基本信息
- 批准号:10058915
- 负责人:
- 金额:$ 302.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:Adaptive BehaviorsAddressAffectAnatomyAnimalsAplysiaArousalBehaviorBehavior ControlBehavioralBiological ModelsBrainCerebrumChoices and ControlCodeCombinatoricsComplexComputer ModelsDataDeglutitionElectrodesElementsEnvironmentFailureFeedbackFeeding behaviorsFoodFutureGangliaHodgkin-Huxley modelHumanImplantInterneuronsInvestigationLearningMechanicsMediatingMemoryMichiganModelingMonitorMotivationMotorMotor NeuronsMovementNervous system structureNeural Network SimulationNeuromechanicsNeuronsPatternPreparationProcessRegulationResearchRoleSatiationSpecific qualifier valueSpinal CordStimulusSynapsesSystemTechniquesTestingTexasVertebratesWorkbasebehavior predictionbiomechanical modelcarbon fibercombinatorialconnectomefeedingfood surveillanceimprovedinsightmathematical analysismechanical loadmotor behaviormultidisciplinaryneural circuitneural modelneuronal patterningnew technologynovelnovel strategiespredictive modelingrelating to nervous systemresponsesensory inputsensory stimulussuccessvoltage sensitive dye
项目摘要
SUMMARY
Adaptive behaviors emerge from neuronal networks by dynamically regulating functional connectomes. Based
on an underlying anatomical connectome, a functional connectome is the configuration of effective synaptic
connections that underlies a pattern of neuronal activity during a specific behavior. Unique combinations of
neurons activate specific functional connectomes, thereby generating a behavior (a combinatoric code). By
combining neural network and biomechanical modeling, intracellular recording, and newly developed large-scale
recording techniques, we will analyze functional connectomes and their combinatoric control of behavior, and
how local plasticity and global dynamics mediate feeding behavior, which is controlled by a small brain system.
The research will be performed by a multidisciplinary team consisting of Drs. J. Byrne (U. Texas, Houston), C.
Chestek (U. Michigan, Ann Arbor), H. Chiel (CWRU), E. Cropper (Mt. Sinai), A. Susswein (Bar Ilan U.), P.
Thomas (CWRU) and K. Weiss (Mt. Sinai). The project will: 1) develop a predictive neuromechanical model that
incorporates a biomechanical model of the feeding musculature with a computational model of the feeding neural
circuitry; 2) use large-scale and intracellular recording techniques to analyze the functional connectome and
combinatoric control for choices among different feeding behaviors in response to sensory stimuli; and 3) use
these recording techniques to analyze the ways in which the functional connectome and its combinatoric control
are reconfigured by modulatory factors, motivation, and learning. We also will examine the ways in which arousal
and satiation change the bias of the functional connectome and thus alter behavior, and the ways in which learning
may add or remove elements of the functional connectome as an animal modifies behavior to respond to changes
in the environment. The results will provide insights into how processes at multiple levels of neural organization
contribute to regulation of behavior. Such studies in a small brain model system will provide insights that will help
guide future investigations in more complex systems, such as vertebrates and humans.
概括
通过动态调节功能连接组,神经元网络产生适应性行为。基于
在底层解剖连接组上,功能连接组是有效突触的配置
特定行为期间神经元活动模式基础的连接。独特的组合
神经元激活特定的功能连接组,从而产生行为(组合代码)。经过
结合神经网络和生物力学建模、细胞内记录以及新开发的大规模
记录技术,我们将分析功能性连接体及其对行为的组合控制,以及
局部可塑性和全局动态如何调节由小型大脑系统控制的进食行为。
该研究将由由博士组成的多学科团队进行。 J. Byrne(美国德克萨斯州休斯顿),C.
Chestek(美国密歇根州,安娜堡)、H. Chiel(CWRU)、E. Cropper(西奈山)、A. Susswein(巴伊兰大学)、P.
Thomas (CWRU) 和 K. Weiss (西奈山)。该项目将:1)开发一个预测神经力学模型
将进食肌肉组织的生物力学模型与进食神经的计算模型相结合
电路; 2)利用大规模细胞内记录技术来分析功能连接组和
响应感官刺激而选择不同进食行为的组合控制; 3)使用
这些记录技术来分析功能性连接体及其组合控制的方式
通过调节因素、动机和学习进行重新配置。我们还将研究唤醒的方式
饱足感改变了功能连接组的偏差,从而改变了行为以及学习的方式
当动物改变行为以应对变化时,可能会添加或删除功能性连接组的元素
在环境中。结果将提供对神经组织多个层面的过程如何进行的见解
有助于规范行为。在小型大脑模型系统中进行的此类研究将提供有助于帮助
指导未来对更复杂系统(例如脊椎动物和人类)的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John H Byrne其他文献
John H Byrne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John H Byrne', 18)}}的其他基金
A novel approach to analyzing functional connectomics and combinatorial control in a tractable small-brain closed-loop system
一种在易处理的小脑闭环系统中分析功能连接组学和组合控制的新方法
- 批准号:
10700737 - 财政年份:2020
- 资助金额:
$ 302.21万 - 项目类别:
Modeling the Molecular Networks that Underlie the Formation and Consolidation of Memory
模拟记忆形成和巩固的分子网络
- 批准号:
10607560 - 财政年份:2018
- 资助金额:
$ 302.21万 - 项目类别:
Modeling the Molecular Networks that Underlie the Formation and Consolidation of Memory
模拟记忆形成和巩固的分子网络
- 批准号:
10083237 - 财政年份:2018
- 资助金额:
$ 302.21万 - 项目类别:
Analyses of the Distributed Representation of Associative-Learning in an Identified Circuit Using a Combination of Single-Cell Electrophysiology and Multicellular Voltage-Sensitive Dye Recordings
结合单细胞电生理学和多细胞电压敏感染料记录分析已识别电路中联想学习的分布式表示
- 批准号:
10083235 - 财政年份:2018
- 资助金额:
$ 302.21万 - 项目类别:
Modeling the Molecular Networks that Underlie the Formation and Consolidation of Memory
模拟记忆形成和巩固的分子网络
- 批准号:
10317000 - 财政年份:2018
- 资助金额:
$ 302.21万 - 项目类别:
Analyses of the Distributed Representation of Associative-Learning in an Identified Circuit Using a Combination of Single-Cell Electrophysiology and Multicellular Voltage-Sensitive Dye Recordings
结合单细胞电生理学和多细胞电压敏感染料记录分析已识别电路中联想学习的分布式表示
- 批准号:
10317049 - 财政年份:2018
- 资助金额:
$ 302.21万 - 项目类别:
Analyses of the Distributed Representation of Associative-Learning in an Identified Circuit Using a Combination of Single-Cell Electrophysiology and Multicellular Voltage-Sensitive Dye Recordings
结合单细胞电生理学和多细胞电压敏感染料记录分析已识别电路中联想学习的分布式表示
- 批准号:
10539225 - 财政年份:2018
- 资助金额:
$ 302.21万 - 项目类别:
Modeling Gene Regulation Essential for Long-Term Plasticity
对长期可塑性至关重要的基因调控建模
- 批准号:
8652842 - 财政年份:2011
- 资助金额:
$ 302.21万 - 项目类别:
Modeling Gene Regulation Essential for Long-Term Plasticity
对长期可塑性至关重要的基因调控建模
- 批准号:
8258707 - 财政年份:2011
- 资助金额:
$ 302.21万 - 项目类别:
Modeling Gene Regulation Essential for Long-Term Plasticity
对长期可塑性至关重要的基因调控建模
- 批准号:
8464817 - 财政年份:2011
- 资助金额:
$ 302.21万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Integrative Analysis of Adaptive Information Processing and Learning-Dependent Circuit Reorganization in the Auditory System
听觉系统中自适应信息处理和学习依赖电路重组的综合分析
- 批准号:
10715925 - 财政年份:2023
- 资助金额:
$ 302.21万 - 项目类别:
Examining the Effectiveness of the Early Start Denver Model in Community Programs serving Young Autistic Children
检查早期开始丹佛模式在为自闭症儿童服务的社区项目中的有效性
- 批准号:
10725999 - 财政年份:2023
- 资助金额:
$ 302.21万 - 项目类别:
Optimization of a personalized skin cancer risk intervention for at-risk young adults
针对高危年轻人的个性化皮肤癌风险干预措施的优化
- 批准号:
10582944 - 财政年份:2023
- 资助金额:
$ 302.21万 - 项目类别:
Community reentry for older adults leaving prison with and without health limitations
有或没有健康限制的出狱老年人重返社区
- 批准号:
10741029 - 财政年份:2023
- 资助金额:
$ 302.21万 - 项目类别:
Beat Extreme: An Interactive, Tailored Text Messaging Program Combining Extreme Weather Alerts with Hyper-localized Resources & Actionable Insights for Addressing Climate Change
Beat Extreme:一款将极端天气警报与超本地化资源相结合的交互式定制短信程序
- 批准号:
10698887 - 财政年份:2023
- 资助金额:
$ 302.21万 - 项目类别: