Modeling Gene Regulation Essential for Long-Term Plasticity

对长期可塑性至关重要的基因调控建模

基本信息

  • 批准号:
    8185497
  • 负责人:
  • 金额:
    $ 29.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-05-01 至 2016-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Learning and memory are cornerstones of human cognition, and cognitive defects are associated with many brain disorders. It has recently become possible to relate cognitive function to specific molecules. These molecules include the CREB family of transcription factors, which are essential for long-term (LT) synaptic plasticity and memory. Alterations in CREB signaling pathways are associated with diseases that impair cognition, such as Rubinstein-Taybi syndrome, neurofibromatosis, and Coffin-Lowry syndrome. Many of the molecular details of these signaling pathways are known. However, the ways in which these elements quantitatively account for normal and pathological cellular behavior are not well understood because the signaling cascades are embedded in a biochemical and genetic network that includes extensive cross talk and negative and positive feedback loops. To address this issue, the present proposal outlines computational studies that model and simulate CREB signaling pathways and their role in memory. Two well characterized neuronal correlates of memory will be modeled: long-term facilitation (LTF) and long-term potentiation (LTP). The proposed models will use differential equations to simulate molecular processes and will be constrained by empirical data. Aim 1 will test the hypothesis that the dynamics for the induction and consolidation of LTF are governed by the dynamics of the PKA and ERK kinase cascades and by feedback loops within CREB regulated transcription. Simulations will examine the efficacy of training protocols and predict protocols that optimize learning. Aim 2 will test the hypothesis that LTF and LTP share molecular mechanisms and dynamics. Simulations will identify control parameters, which may correspond to pharmacological control points for enhancing learning and cognition. Simulations also will explore LT plasticity impairment due to mutations that affect CREB activity, such as Rubinstein-Taybi syndrome. Finally, the models will be used to predict treatments for ameliorating CREB-related memory deficits and thereby help restore normal plasticity, learning and memory. PUBLIC HEALTH RELEVANCE: Learning and memory are essential to human cognition, and their disruptions contribute to several brain diseases including neurofibromatosis, Rubinstein-Taybi syndrome, and Coffin-Lowry syndrome. This project will advance the understanding of basic memory mechanisms, which will lead to better learning paradigms and help identify molecular targets for pharmacological treatments of brain disorders.
描述(由申请人提供):学习和记忆是人类认知的基石,认知缺陷与许多大脑疾病有关。最近,将认知功能与特定分子联系起来已成为可能。这些分子包括 CREB ​​转录因子家族,它们对于长期 (LT) 突触可塑性和记忆至关重要。 CREB ​​信号通路的改变与损害认知的疾病有关,例如 Rubinstein-Taybi 综合征、神经纤维瘤病和 Coffin-Lowry 综合征。这些信号传导途径的许多分子细节是已知的。然而,这些元素定量解释正常和病理细胞行为的方式尚不清楚,因为信号级联嵌入到生化和遗传网络中,其中包括广泛的串扰以及负反馈和正反馈回路。为了解决这个问题,本提案概述了模拟和模拟 CREB ​​信号通路及其在记忆中的作用的计算研究。将对记忆的两个明确表征的神经元相关性进行建模:长期促进(LTF)和长期增强(LTP)。 所提出的模型将使用微分方程来模拟分子过程,并将受到经验数据的约束。目标 1 将检验以下假设:LTF 的诱导和巩固的动力学受 PKA 和 ERK 激酶级联的动力学以及 CREB ​​调节转录内的反馈环控制。模拟将检查训练方案的有效性并预测优化学习的方案。目标 2 将检验 LTF 和 LTP 共享分子机制和动力学的假设。 模拟将识别控制参数,这些参数可能对应于增强学习和认知的药理学控制点。模拟还将探索由于影响 CREB ​​活性的突变(例如 Rubinstein-Taybi 综合征)导致的 LT 可塑性损伤。最后,这些模型将用于预测改善 CREB ​​相关记忆缺陷的治疗方法,从而帮助恢复正常的可塑性、学习和记忆。 公共健康相关性:学习和记忆对于人类认知至关重要,其破坏会导致多种脑部疾病,包括神经纤维瘤病、鲁宾斯坦-泰比综合征和科芬-洛瑞综合征。该项目将促进对基本记忆机制的理解,这将带来更好的学习范式,并有助于确定脑部疾病药物治疗的分子靶标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John H Byrne其他文献

John H Byrne的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John H Byrne', 18)}}的其他基金

A novel approach to analyzing functional connectomics and combinatorial control in a tractable small-brain closed-loop system
一种在易处理的小脑闭环系统中分析功能连接组学和组合控制的新方法
  • 批准号:
    10700737
  • 财政年份:
    2020
  • 资助金额:
    $ 29.53万
  • 项目类别:
A novel approach to analyzing functional connectomics and combinatorial control in a tractable small-brain closed-loop system
一种在易处理的小脑闭环系统中分析功能连接组学和组合控制的新方法
  • 批准号:
    10058915
  • 财政年份:
    2020
  • 资助金额:
    $ 29.53万
  • 项目类别:
Modeling the Molecular Networks that Underlie the Formation and Consolidation of Memory
模拟记忆形成和巩固的分子网络
  • 批准号:
    10607560
  • 财政年份:
    2018
  • 资助金额:
    $ 29.53万
  • 项目类别:
Modeling the Molecular Networks that Underlie the Formation and Consolidation of Memory
模拟记忆形成和巩固的分子网络
  • 批准号:
    10083237
  • 财政年份:
    2018
  • 资助金额:
    $ 29.53万
  • 项目类别:
Analyses of the Distributed Representation of Associative-Learning in an Identified Circuit Using a Combination of Single-Cell Electrophysiology and Multicellular Voltage-Sensitive Dye Recordings
结合单细胞电生理学和多细胞电压敏感染料记录分析已识别电路中联想学习的分布式表示
  • 批准号:
    10083235
  • 财政年份:
    2018
  • 资助金额:
    $ 29.53万
  • 项目类别:
Modeling the Molecular Networks that Underlie the Formation and Consolidation of Memory
模拟记忆形成和巩固的分子网络
  • 批准号:
    10317000
  • 财政年份:
    2018
  • 资助金额:
    $ 29.53万
  • 项目类别:
Analyses of the Distributed Representation of Associative-Learning in an Identified Circuit Using a Combination of Single-Cell Electrophysiology and Multicellular Voltage-Sensitive Dye Recordings
结合单细胞电生理学和多细胞电压敏感染料记录分析已识别电路中联想学习的分布式表示
  • 批准号:
    10317049
  • 财政年份:
    2018
  • 资助金额:
    $ 29.53万
  • 项目类别:
Analyses of the Distributed Representation of Associative-Learning in an Identified Circuit Using a Combination of Single-Cell Electrophysiology and Multicellular Voltage-Sensitive Dye Recordings
结合单细胞电生理学和多细胞电压敏感染料记录分析已识别电路中联想学习的分布式表示
  • 批准号:
    10539225
  • 财政年份:
    2018
  • 资助金额:
    $ 29.53万
  • 项目类别:
Modeling Gene Regulation Essential for Long-Term Plasticity
对长期可塑性至关重要的基因调控建模
  • 批准号:
    8652842
  • 财政年份:
    2011
  • 资助金额:
    $ 29.53万
  • 项目类别:
Modeling Gene Regulation Essential for Long-Term Plasticity
对长期可塑性至关重要的基因调控建模
  • 批准号:
    8464817
  • 财政年份:
    2011
  • 资助金额:
    $ 29.53万
  • 项目类别:

相似国自然基金

兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
  • 批准号:
    72302197
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
  • 批准号:
    72332003
  • 批准年份:
    2023
  • 资助金额:
    166 万元
  • 项目类别:
    重点项目
签字注册会计师动态配置问题研究:基于临阵换师视角
  • 批准号:
    72362023
  • 批准年份:
    2023
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
异常获利、捐赠与会计信息操纵:基于新冠疫情的准自然实验研究
  • 批准号:
    72372061
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目

相似海外基金

Pulmonary aging increases MUC5AC in the airway epithelium, increasing the risk of carcinogenesis
肺部老化增加气道上皮中的MUC5AC,增加致癌风险
  • 批准号:
    10583805
  • 财政年份:
    2023
  • 资助金额:
    $ 29.53万
  • 项目类别:
Mechanisms of metabolic stress-induced transcriptional regulation in prostate cancer
前列腺癌代谢应激诱导的转录调控机制
  • 批准号:
    10818087
  • 财政年份:
    2023
  • 资助金额:
    $ 29.53万
  • 项目类别:
Intersection of autophagy and vesicle trafficking in Her2-positive breast cancer
Her2 阳性乳腺癌中自噬和囊泡运输的交叉点
  • 批准号:
    10658423
  • 财政年份:
    2023
  • 资助金额:
    $ 29.53万
  • 项目类别:
BET-BD1 Selective Neuroimaging probes for Alzheimer's disease research
用于阿尔茨海默病研究的 BET-BD1 选择性神经影像探针
  • 批准号:
    10628245
  • 财政年份:
    2023
  • 资助金额:
    $ 29.53万
  • 项目类别:
Resetting the Clock in HIV associated COPD
重置艾滋病毒相关慢性阻塞性肺病的时钟
  • 批准号:
    10672182
  • 财政年份:
    2022
  • 资助金额:
    $ 29.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了