Spatial patterning modulates tissue revascularization and regeneration
空间模式调节组织血运重建和再生
基本信息
- 批准号:10053944
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-20 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAmputationAnastomosis - actionAngioplastyArchitectureArteriographiesAutologousAwardBalloon AngioplastyBiologicalBiological AssayBlood VesselsBlood capillariesBlood flowCardiovascular systemCell Culture TechniquesCellsCellular MorphologyComputer InterfaceCoupledCuesData ScienceDeteriorationDiagnosisDifferentiation AntigensDiseaseEndothelial CellsEndotheliumEngineeringEnsureEnzyme-Linked Immunosorbent AssayExtracellular MatrixFGF2 geneFirst Independent Research Support and Transition AwardsFocal Adhesion Kinase 1FoundationsFutureGene SilencingGenerationsGenesGenetic TranscriptionGoalsGrantGrowth FactorHistologicImageIn VitroIndividualInjuryInsulin-Like Growth Factor IIntegrinsInterventionIschemiaIsolated limb perfusionIsolectinLasersLeadLimb structureLinkMAPK7 geneMediatingMedicineMethodologyMitogen-Activated Protein KinasesMolecularMonitorMorbidity - disease rateMotor ActivityMusMuscleMuscle FibersMuscle functionMyoblastsNatural regenerationOperative Surgical ProceduresPECAM1 genePathway interactionsPatternPeripheral arterial diseasePhenotypePhysiologicalPlatelet-Derived Growth FactorPlayProcessPropertyPublic HealthReconstructive Surgical ProceduresRecovery of FunctionReperfusion TherapyResearchRoleRunningSamplingSeriesSignal TransductionSiteSkeletal MuscleSkeletal Muscle MyosinsStainsStentsStructureTherapeuticTherapeutic InterventionTissue EngineeringTissuesTrainingTransplantationTreatment EfficacyTubeUnited StatesUnited States National Institutes of HealthVascular DiseasesVascular Endothelial CellVascular Endothelial Growth FactorsVascularizationVein graftWorkangiogenesisartery occlusionbaseblood perfusioncadherin 5careercritical limb Ischemiacytokinedensitydisabilityefficacy evaluationexternshipfunctional genomicshealth goalsimplantationimprovedinjuredinnovationinsightloss of functionmechanical propertiesmedical schoolsmortalitymouse modelmuscle physiologymuscle regenerationmyogenesisnanofibrillarnanoscaleneutralizing antibodynovelparacrineregenerativerepairedrestorationscaffoldtherapeutic evaluationtissue injurytissue regenerationtranscriptome sequencingvascular injuryvon Willebrand Factor
项目摘要
PROJECT SUMMARY
8.5 million people in the United States suffer from peripheral arterial disease (PAD). As the disease
progresses, it can lead to severe obstruction of arterial blood flow to the extremities causing critical limb
ischemia, and is associated with devastatingly high mortality rates of up to 20% just 6 months from initial
diagnosis. This condition requires immediate endovascular treatment to re-establish blood flow, commonly
through the use of stents, balloon angioplasty, or autologous vein grafts; however, these treatments require
multiple interventions and do not conclusively lower the amputation rates. Therapeutic interventions aimed at
long-term functional recovery must augmenting tissue angiogenesis concomitant with restoring physiological
tissue architecture. This K99/R00 Pathway to Independence Award builds on previous work that demonstrates
that spatial patterning cues from nanoscale extracellular matrices modulate endothelial cell (EC) morphology
and angiogenic function. The objective of the current study is to use nanoscale cell guidance from aligned 3D
scaffolds to enhance the angiogenic potential of vascular ECs, with the regenerative goal of restoring blood
flow to ischemic regions and enabling functional repair of severely damaged tissue, an important public health
goal that has been challenging to attain.
First, this award will provide the opportunity to examine the role of spatial patterning using aligned
versus non-patterned scaffolds, in the enhancement of EC angiogenic function as well as the modulation of
muscle myoblasts phenotype and mechanical properties. In parallel with this aim, the therapeutic efficacy of
EC-seeded aligned scaffolds in comparison to non-patterned scaffolds, will be assessed for tissue
revascularization and muscle regeneration in a mouse model of volumetric muscle and vascular injury.
Through these studies, the challenge of restoring both vascular and muscular function to injured tissues is
tackled on multiple fronts by using spatial cell patterning to induce an EC phenotype concomitant with
angiogenesis that will in turn enhance muscle myofiber differentiation and maturation. Finally, to gain a deeper
understanding of the mechanisms by which gene networks and pathways work in concert to promote
angiogenesis through spatial patterning, methodologies in gene silencing and functional genomics will be
employed to reveal novel cell patterning pathways. The proposed training will include courses offered through
the Stanford School of Medicine and externships with leading experts in the fields of cardiovascular medicine,
data science, and muscle regeneration. The proposed series of studies will deepen the understanding of the
biological mechanisms through which spatial cell patterning confers enhancement of EC angiogenesis and
muscle myoblast function. Findings from these studies will provide insights that will inform future regenerative
strategies and engineered therapeutics for revascularization of severely damaged and ischemic tissues, and
will serve as an innovative platform and important step in the treatment of a broad range of vascular diseases.
项目概要
美国有 850 万人患有外周动脉疾病 (PAD)。由于疾病
进展时,可能会导致四肢动脉血流严重受阻,从而导致危重肢体
缺血,并且与从最初开始仅 6 个月内高达 20% 的极高死亡率相关
诊断。这种情况需要立即进行血管内治疗以重新建立血流,通常
通过使用支架、球囊血管成形术或自体静脉移植物;然而,这些治疗需要
多种干预措施并不能最终降低截肢率。治疗干预措施旨在
长期功能恢复必须增强组织血管生成,同时恢复生理功能
组织结构。该 K99/R00 独立之路奖建立在之前的工作基础之上,展示了
来自纳米级细胞外基质的空间图案线索调节内皮细胞(EC)形态
和血管生成功能。当前研究的目标是使用对齐的 3D 纳米级细胞引导
增强血管内皮细胞的血管生成潜力的支架,其再生目标是恢复血液
流向缺血区域并实现严重受损组织的功能修复,这是一项重要的公共卫生
一直难以实现的目标。
首先,该奖项将提供机会来检验使用对齐的空间图案的作用
与非图案支架相比,在增强 EC 血管生成功能以及调节
肌肉成肌细胞表型和机械特性。与此目标同时,治疗效果
与非图案化支架相比,EC 接种对齐支架将进行组织评估
体积肌肉和血管损伤小鼠模型中的血运重建和肌肉再生。
通过这些研究,恢复受损组织的血管和肌肉功能的挑战是
通过使用空间细胞图案来诱导 EC 表型并同时解决
血管生成反过来会增强肌肉肌纤维的分化和成熟。最后,为了更深入地了解
了解基因网络和途径协同作用以促进的机制
通过空间模式的血管生成、基因沉默和功能基因组学的方法将是
用于揭示新的细胞模式途径。拟议的培训将包括通过以下方式提供的课程:
斯坦福大学医学院和心血管医学领域顶尖专家的实习机会,
数据科学和肌肉再生。拟议的系列研究将加深对
空间细胞模式增强 EC 血管生成的生物学机制
肌肉成肌细胞功能。这些研究的结果将为未来的再生提供见解
严重受损和缺血组织血运重建的策略和工程治疗方法,以及
将成为治疗广泛血管疾病的创新平台和重要一步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karina Nakayama其他文献
Karina Nakayama的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karina Nakayama', 18)}}的其他基金
Regenerative engineering for complex extremity trauma
复杂肢体创伤的再生工程
- 批准号:
10584227 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Spatial patterning modulates tissue revascularization and regeneration
空间模式调节组织血运重建和再生
- 批准号:
10368134 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
PGE2通过EP受体调控CCL2/CCR2信号通路轴介导截肢后爆发痛的外周机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
躯体感觉皮层神经元-小胶质细胞交互作用调控截肢后继发性疼痛的神经机制
- 批准号:82171218
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
下肢截肢后外周血管阻抗改变影响心血管系统的血流动力学研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
面向膝上截肢者融合智能下肢假肢的新型外骨骼机器人关键技术研究
- 批准号:61803272
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
利用靶向神经移植术重建缺失肢体运动神经信息源及机制研究
- 批准号:81760416
- 批准年份:2017
- 资助金额:34.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Ultra-thin, high strength, drug-eluting sutures for prevention of thrombosis in microvascular surgery
用于预防微血管手术中血栓形成的超薄、高强度药物洗脱缝线
- 批准号:
10521864 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Dynamic ECM-Mimicking Biomaterials for Ischemia Treatment
用于缺血治疗的动态 ECM 模拟生物材料
- 批准号:
10540794 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Dynamic ECM-Mimicking Biomaterials for Ischemia Treatment
用于缺血治疗的动态 ECM 模拟生物材料
- 批准号:
10367736 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Spatial patterning modulates tissue revascularization and regeneration
空间模式调节组织血运重建和再生
- 批准号:
10368134 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
Mechanisms of Collateral Development and Collateral Growth in Ischemia
缺血时的侧枝发育和侧枝生长机制
- 批准号:
7910685 - 财政年份:2008
- 资助金额:
$ 24.9万 - 项目类别: