Spatial patterning modulates tissue revascularization and regeneration
空间模式调节组织血运重建和再生
基本信息
- 批准号:10368134
- 负责人:
- 金额:$ 24.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-20 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAmputationAnastomosis - actionAngioplastyArchitectureArteriographiesAutologousAwardBalloon AngioplastyBiologicalBiological AssayBlood VesselsBlood capillariesBlood flowCardiovascular systemCell Culture TechniquesCellsCellular MorphologyComputer InterfaceCoupledCuesData ScienceDeteriorationDiagnosisDifferentiation AntigensDiseaseEndothelial CellsEndotheliumEngineeringEnsureEnzyme-Linked Immunosorbent AssayExtracellular MatrixFGF2 geneFirst Independent Research Support and Transition AwardsFocal Adhesion Kinase 1FoundationsFutureGene SilencingGenerationsGenesGenetic TranscriptionGoalsGrantGrowth FactorHistologicImageIn VitroIndividualInjuryInsulin-Like Growth Factor IIntegrinsInterventionIschemiaIsolated limb perfusionIsolectinLasersLeadLimb structureLinkMAPK7 geneMediatingMedicineMethodologyMitogen-Activated Protein KinasesMolecularMonitorMorbidity - disease rateMotor ActivityMusMuscleMuscle FibersMuscle functionMyoblastsNatural regenerationOperative Surgical ProceduresPECAM1 genePathway interactionsPatternPeripheral arterial diseasePersonsPhenotypePhysiologicalPlatelet-Derived Growth FactorPlayProcessPropertyPublic HealthReconstructive Surgical ProceduresRecovery of FunctionRegenerative engineeringReperfusion TherapyResearchRoleRunningSamplingSeriesSignal TransductionSiteSkeletal MuscleSkeletal Muscle MyosinsStainsStentsStructureTherapeuticTherapeutic InterventionTissue EngineeringTissuesTrainingTransplantationTreatment EfficacyTubeUnited StatesUnited States National Institutes of HealthVascular DiseasesVascular Endothelial CellVascular Endothelial Growth FactorsVascularizationVein graftWorkangiogenesisartery occlusionbasebioluminescence imagingblood perfusioncadherin 5careercritical limb Ischemiacytokinedensitydisabilityefficacy evaluationexternshipfunctional genomicsgene networkhealth goalsimplantationimprovedinjuredinnovationinsightloss of functionmechanical propertiesmedical schoolsmortalitymouse modelmuscle physiologymuscle regenerationmyogenesisnanofibrillarnanoscaleneutralizing antibodynovelparacrineregenerativeregenerative approachrepairedrestorationscaffoldtherapeutic evaluationtissue injurytissue regenerationtranscriptome sequencingvascular injuryvon Willebrand Factor
项目摘要
PROJECT SUMMARY
8.5 million people in the United States suffer from peripheral arterial disease (PAD). As the disease
progresses, it can lead to severe obstruction of arterial blood flow to the extremities causing critical limb
ischemia, and is associated with devastatingly high mortality rates of up to 20% just 6 months from initial
diagnosis. This condition requires immediate endovascular treatment to re-establish blood flow, commonly
through the use of stents, balloon angioplasty, or autologous vein grafts; however, these treatments require
multiple interventions and do not conclusively lower the amputation rates. Therapeutic interventions aimed at
long-term functional recovery must augmenting tissue angiogenesis concomitant with restoring physiological
tissue architecture. This K99/R00 Pathway to Independence Award builds on previous work that demonstrates
that spatial patterning cues from nanoscale extracellular matrices modulate endothelial cell (EC) morphology
and angiogenic function. The objective of the current study is to use nanoscale cell guidance from aligned 3D
scaffolds to enhance the angiogenic potential of vascular ECs, with the regenerative goal of restoring blood
flow to ischemic regions and enabling functional repair of severely damaged tissue, an important public health
goal that has been challenging to attain.
First, this award will provide the opportunity to examine the role of spatial patterning using aligned
versus non-patterned scaffolds, in the enhancement of EC angiogenic function as well as the modulation of
muscle myoblasts phenotype and mechanical properties. In parallel with this aim, the therapeutic efficacy of
EC-seeded aligned scaffolds in comparison to non-patterned scaffolds, will be assessed for tissue
revascularization and muscle regeneration in a mouse model of volumetric muscle and vascular injury.
Through these studies, the challenge of restoring both vascular and muscular function to injured tissues is
tackled on multiple fronts by using spatial cell patterning to induce an EC phenotype concomitant with
angiogenesis that will in turn enhance muscle myofiber differentiation and maturation. Finally, to gain a deeper
understanding of the mechanisms by which gene networks and pathways work in concert to promote
angiogenesis through spatial patterning, methodologies in gene silencing and functional genomics will be
employed to reveal novel cell patterning pathways. The proposed training will include courses offered through
the Stanford School of Medicine and externships with leading experts in the fields of cardiovascular medicine,
data science, and muscle regeneration. The proposed series of studies will deepen the understanding of the
biological mechanisms through which spatial cell patterning confers enhancement of EC angiogenesis and
muscle myoblast function. Findings from these studies will provide insights that will inform future regenerative
strategies and engineered therapeutics for revascularization of severely damaged and ischemic tissues, and
will serve as an innovative platform and important step in the treatment of a broad range of vascular diseases.
项目摘要
美国有850万人患有周围动脉疾病(PAD)。作为疾病
进步,可能导致严重阻塞动脉血流到肢体导致临界肢体的肢体
缺血,并且与最初仅6个月的毁灭性高死亡率高达20%有关
诊断。这种情况需要立即进行血管内治疗以重新建立血液,通常
通过使用支架,气球血管成形术或自体静脉移植;但是,这些治疗需要
多次干预措施,不会最终降低截肢率。针对的治疗干预措施
长期功能恢复必须增强组织血管生成与恢复生理
组织结构。这项K99/R00独立奖的奖项是基于以前的作品建立的
来自纳米级细胞外矩阵的空间图案提示调节内皮细胞(EC)形态
和血管生成功能。当前研究的目的是使用对齐3D的纳米级细胞指导
脚手架以增强血管EC的血管生成潜力,其再生目标是恢复血液
流向缺血区域并实现严重损坏的组织的功能修复,这是一个重要的公共卫生
实现挑战的目标。
首先,该奖项将提供机会,以检查使用Alimed的空间图案的作用
在增强EC血管生成功能以及调制方面,
肌肉成肌细胞表型和机械性能。与这个目标并联,治疗功效
与非图案脚手架相比,将评估组织的ec种子对准支架
体积肌肉和血管损伤的小鼠模型中的血运重建和肌肉再生。
通过这些研究,恢复受伤组织的血管和肌肉功能的挑战是
通过使用空间细胞模式在多个方面进行处理,以诱导与
血管生成会增强肌肉肌纤维的分化和成熟。最后,更深入
了解基因网络和途径协同促进的机制
通过空间模式,基因沉默的方法论和功能基因组学中的方法论是
被用来揭示新颖的细胞模式途径。拟议的培训将包括通过
斯坦福大学医学院和企业与心血管医学领域的领先专家
数据科学和肌肉再生。拟议的一系列研究将加深对
空间细胞模式的生物学机制赋予EC血管生成的增强和
肌肉成肌细胞功能。这些研究的发现将提供见解,这些见解将为未来的再生提供信息
严重受损和缺血组织血运重建的策略和工程疗法,以及
将作为一个创新平台,也将在治疗广泛的血管疾病方面进行重要一步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karina Nakayama其他文献
Karina Nakayama的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karina Nakayama', 18)}}的其他基金
Regenerative engineering for complex extremity trauma
复杂肢体创伤的再生工程
- 批准号:
10584227 - 财政年份:2023
- 资助金额:
$ 24.47万 - 项目类别:
Spatial patterning modulates tissue revascularization and regeneration
空间模式调节组织血运重建和再生
- 批准号:
10053944 - 财政年份:2020
- 资助金额:
$ 24.47万 - 项目类别:
相似国自然基金
PGE2通过EP受体调控CCL2/CCR2信号通路轴介导截肢后爆发痛的外周机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
PGE2通过EP受体调控CCL2/CCR2信号通路轴介导截肢后爆发痛的外周机制研究
- 批准号:82271250
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
躯体感觉皮层神经元-小胶质细胞交互作用调控截肢后继发性疼痛的神经机制
- 批准号:82171218
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
下肢截肢后外周血管阻抗改变影响心血管系统的血流动力学研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
面向膝上截肢者融合智能下肢假肢的新型外骨骼机器人关键技术研究
- 批准号:61803272
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Ultra-thin, high strength, drug-eluting sutures for prevention of thrombosis in microvascular surgery
用于预防微血管手术中血栓形成的超薄、高强度药物洗脱缝线
- 批准号:
10521864 - 财政年份:2022
- 资助金额:
$ 24.47万 - 项目类别:
Dynamic ECM-Mimicking Biomaterials for Ischemia Treatment
用于缺血治疗的动态 ECM 模拟生物材料
- 批准号:
10540794 - 财政年份:2021
- 资助金额:
$ 24.47万 - 项目类别:
Dynamic ECM-Mimicking Biomaterials for Ischemia Treatment
用于缺血治疗的动态 ECM 模拟生物材料
- 批准号:
10367736 - 财政年份:2021
- 资助金额:
$ 24.47万 - 项目类别:
Spatial patterning modulates tissue revascularization and regeneration
空间模式调节组织血运重建和再生
- 批准号:
10053944 - 财政年份:2020
- 资助金额:
$ 24.47万 - 项目类别:
Mechanisms of Collateral Development and Collateral Growth in Ischemia
缺血时的侧枝发育和侧枝生长机制
- 批准号:
7910685 - 财政年份:2008
- 资助金额:
$ 24.47万 - 项目类别: