Dynamic ECM-Mimicking Biomaterials for Ischemia Treatment
用于缺血治疗的动态 ECM 模拟生物材料
基本信息
- 批准号:10367736
- 负责人:
- 金额:$ 62.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-15 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAnastomosis - actionArchitectureBehaviorBindingBinding SitesBiocompatible MaterialsBiologicalBiophysicsBlood VesselsBlood capillariesBlood flowCardiovascular systemCellsClinicClinicalCollagenComplexCoupledCouplingCrosslinkerCuesDataDevelopmentDisease modelElasticityEndothelial CellsEngineeringEngraftmentExtracellular MatrixGenerationsGoalsHealthHindlimbHumanHyaluronic AcidHybridsHydrogelsImplantIn SituIn VitroIschemiaLeadMechanicsMediatingMetalloproteasesMethodsModelingMolecularMorbidity - disease rateMorphogenesisOutcomePatientsPeptidesPeptoidsPerfusionPericytesPeripheralPeripheral arterial diseasePopulationPredispositionProcessPropertyReactionRecoveryRegulationSelf-DirectionShapesSkinStimulusStructureSulfhydryl CompoundsSystemTestingTherapeuticTimeTissue EngineeringTissue TherapyTissuesTractionWorkbioscaffoldcell assemblycell typecomputational pipelinescritical limb Ischemiacrosslinkdensityendothelial stem cellimprovedin vivoindividualized medicineinduced pluripotent stem celllimb amputationlimb ischemianecrotic tissueneovascularneovascularizationnon-invasive monitorpolarized cellpreservationresponseself assemblyspatiotemporalstem cellstherapeutically effectivevasculogenesis
项目摘要
Dynamic ECM-Mimicking Biomaterials for Ischemia Treatment
Peripheral artery disease (PAD) is the third most common cause of cardiovascular morbidity worldwide, present
in 20% of the population over 65. If PAD is not treated, it can progress to critical limb ischemia, resulting in tissue
necrosis and eventual limb amputation. Vasculogenesis, the process of de novo vessel formation from progenitor
cells, may prove an effective therapeutic strategy. Vasculogenesis may be accomplished by delivering vascular
progenitor cells derived from human induced pluripotent stem cells (hiPSCs-EPs), which have recently emerged
as a promising, patient-specific therapy. However, the optimal conditions for iPSCs-EPs engraftment and
anastomosis with the host vasculature are unclear, specifically, since the underlying molecular mechanisms that
guide these cells' self-assembly into vascular networks are poorly understood.
To overcome this hurdle, we propose to develop engineered vasculogenic hydrogels, presenting tunable
cues at the cell-matrix interface, that can enhance the therapeutic vasculogenesis of iPSC-EPs for
peripheral ischemia recovery and define the underlying mechanisms through which matrix properties
control vasculogenesis.
Previous work by us and others has shown that stable vascular network formation depends on both cell type and
matrix properties such as stiffness and degradability. Highly degradable matrices such as collagen may support
vasculogenesis initially, but long-term stability is challenging. Furthermore, these matrix properties are coupled
and impact endothelial and perivascular cell sprouting at different time scales in neo-vascular network formation.
Therefore, we hypothesize that temporal, in situ control over local matrix mechanics and degradability in
synthetic matrices will synergistically regulate the vascular morphogenesis of hiPSC-EPs, lead to stable, mature
vascular network formation and improve hind limb ischemia recovery. To test our hypothesis, we propose a
hybrid interpenetrating hydrogel network (IPN) comprised of collagen and norbornene-modified hyaluronic acid
(Coll/NorHA). This system has the advantage of combining the natural cues presented by collagen binding sites
and fibrous architecture with the in situ dynamic tunability of synthetic NorHA. Our goal is to 1) elucidate the
interplay between time-dependent matrix properties and mechanisms that govern vascular network development
and 2) enhance therapeutic vasculogenesis for PAD. In Aim 1, we will modulate the elasticity in these hydrogels
using in situ cross-linking reactions. We will study how stiffening at specific timepoints impacts the resulting
vasculogenic response both in vitro and in vivo in a skin fold model. In a complementary approach to Aim 1, in
Aim 2, we will isolate the effects of matrix degradability on iPSC-EPs vasculogenic potential using Coll/NorHA
IPNs in which proteolytic susceptibility is tuned with matrix metalloprotease-degradable peptides. In Aim 3, we
will test the synergistic impact of coupling matrix mechanics and degradability on iPSC-derived capillary plexus
formation. Specifically, we will elucidate how the maturation level of the in vitro grown vascular plexus enables
in vivo perfusion with host vasculature.
In summary, we propose to enhance therapeutic vasculogenesis of iPSC-EPs for peripheral artery disease
treatment through control of engineered matrix properties using a tunable Coll/NorHA IPN that mimics the
hierarchical temporal structure of native ECM. Elucidating the interplay between matrix properties and
mechanisms that govern vascular network development will identify angiogenic biomaterials that may be
deployed in the clinic to improve patients' vascular health and aid in disease modeling.
动态ECM模拟生物材料用于缺血治疗
周围动脉疾病(PAD)是全球心血管发病率的第三大原因,目前
在20%以上的人口中,如果没有治疗PAD,则可以发展为临界肢体缺血,导致组织
坏死和最终肢体截肢。血管生成,祖先从头形成的过程
细胞可能证明是一种有效的治疗策略。血管生成可以通过输送血管来实现
源自人类诱导的多能干细胞(HIPSCS-EPS)的祖细胞,这些细胞最近出现了
作为一种有希望的特定于患者的治疗。但是,IPSCS-EPS植入的最佳条件和
宿主脉管系统的吻合术不清楚,因为它的基本分子机制是
这些细胞的自组装为血管网络的理解很少。
为了克服这一障碍,我们建议开发工程设计的血管生成水凝胶,可调节
细胞矩阵界面的提示,可以增强IPSC-EPS的治疗性血管生成
外围缺血恢复并定义了基质特性的基本机制
控制血管生成。
我们和其他人的先前工作表明,稳定的血管网络形成取决于细胞类型和
矩阵特性,例如刚度和降解性。高度降解的矩阵(例如胶原蛋白)可能会支持
血管生成最初,但长期稳定性是具有挑战性的。此外,这些矩阵属性是耦合的
以及在新的血管网络形成的不同时间尺度上撞击内皮和血管周围细胞的发芽。
因此,我们假设对局部基质力学的原位控制和降解性
合成矩阵将协同调节嘻哈的血管形态发生,导致稳定,成熟
血管网络形成并改善后肢缺血恢复。为了检验我们的假设,我们提出了一个
由胶原蛋白和诺尔伯烯改性透明质酸组成的混合互穿水凝胶网络(IPN)
(Coll/Norha)。该系统的优点是结合胶原蛋白结合位点提出的自然提示
和纤维结构,具有合成Norha的原位动态可调性。我们的目标是1)阐明
依赖时间依赖的矩阵属性和控制血管网络发展的机制之间的相互作用
2)增强PAD的治疗性血管生成。在AIM 1中,我们将调节这些水凝胶中的弹性
使用原位交联反应。我们将研究在特定时间点上的僵硬如何影响由此产生的
在皮肤折叠模型中,体外和体内的血管生成反应。在AIM 1的补充方法中
AIM 2,我们将使用COLL/NORHA隔离基质降解性对IPSC-EPS血管生成潜力的影响
蛋白水解易感性的IPN用基质金属蛋白酶降解肽调节。在AIM 3中,我们
将测试耦合矩阵力学和降解性对IPSC衍生的毛细管丛的协同影响
形成。具体而言,我们将阐明体外生长的血管丛的成熟水平如何使
带有宿主脉管系统的体内灌注。
总而言之,我们建议增强IPSC-EPS治疗性血管生成用于周围动脉疾病
通过使用可调的Coll/Norha IPN来控制工程基质特性的处理
天然ECM的分层时间结构。阐明矩阵属性和
控制血管网络开发的机制将识别可能是的血管生成生物材料
部署在诊所中,以改善患者的血管健康并有助于疾病建模。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Janeta Zoldan其他文献
Janeta Zoldan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Janeta Zoldan', 18)}}的其他基金
Dynamic ECM-Mimicking Biomaterials for Ischemia Treatment
用于缺血治疗的动态 ECM 模拟生物材料
- 批准号:
10540794 - 财政年份:2021
- 资助金额:
$ 62.22万 - 项目类别:
Painting Vasculature with Photosensitive Liposomes
用光敏脂质体绘制脉管系统
- 批准号:
10019353 - 财政年份:2019
- 资助金额:
$ 62.22万 - 项目类别:
Painting Vasculature with Photosensitive Liposomes
用光敏脂质体绘制脉管系统
- 批准号:
10224193 - 财政年份:2019
- 资助金额:
$ 62.22万 - 项目类别:
相似国自然基金
肠道菌群来源短链脂肪酸介导M2巨噬细胞极化促进肠上皮细胞EMT在结直肠癌吻合口愈合的作用与机制
- 批准号:82360116
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
防控结直肠术后吻合口漏的抗菌促愈合涂层构建及作用机制研究
- 批准号:52373163
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
反复冲击荷载作用下无砟轨道非吻合复合结构层间脱空损伤机理
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
反复冲击荷载作用下无砟轨道非吻合复合结构层间脱空损伤机理
- 批准号:52278459
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
负载Caveolin-1纳米颗粒的吻合口支架在预防动静脉内瘘狭窄中的作用与机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Matrix biophysics and pericyte mechanobiology in (patho)physiological angiogenesis
(病理)生理性血管生成中的基质生物物理学和周细胞力学生物学
- 批准号:
10680994 - 财政年份:2023
- 资助金额:
$ 62.22万 - 项目类别:
Identifying microscopic vasculature within entorhinal cortex in healthy aging and its proximity to pathology profiles in Alzheimer's disease
识别健康衰老过程中内嗅皮层内的微观脉管系统及其与阿尔茨海默氏病病理特征的接近程度
- 批准号:
10657895 - 财政年份:2023
- 资助金额:
$ 62.22万 - 项目类别:
Dynamic ECM-Mimicking Biomaterials for Ischemia Treatment
用于缺血治疗的动态 ECM 模拟生物材料
- 批准号:
10540794 - 财政年份:2021
- 资助金额:
$ 62.22万 - 项目类别:
Cross-species vascular anatomy and sensitivity to intraocular pressure in glaucoma
青光眼的跨物种血管解剖学和对眼压的敏感性
- 批准号:
10493356 - 财政年份:2021
- 资助金额:
$ 62.22万 - 项目类别:
Cross-species vascular anatomy and sensitivity to intraocular pressure in glaucoma
青光眼的跨物种血管解剖学和对眼压的敏感性
- 批准号:
10211782 - 财政年份:2021
- 资助金额:
$ 62.22万 - 项目类别: