Dynamic ECM-Mimicking Biomaterials for Ischemia Treatment
用于缺血治疗的动态 ECM 模拟生物材料
基本信息
- 批准号:10367736
- 负责人:
- 金额:$ 62.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-15 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAnastomosis - actionArchitectureBehaviorBindingBinding SitesBiocompatible MaterialsBiologicalBiophysicsBlood VesselsBlood capillariesBlood flowCardiovascular systemCellsClinicClinicalCollagenComplexCoupledCouplingCrosslinkerCuesDataDevelopmentDisease modelElasticityEndothelial CellsEngineeringEngraftmentExtracellular MatrixGenerationsGoalsHealthHindlimbHumanHyaluronic AcidHybridsHydrogelsImplantIn SituIn VitroIschemiaLeadMechanicsMediatingMetalloproteasesMethodsModelingMolecularMorbidity - disease rateMorphogenesisOutcomePatientsPeptidesPeptoidsPerfusionPericytesPeripheralPeripheral arterial diseasePopulationPredispositionProcessPropertyReactionRecoveryRegulationSelf-DirectionShapesSkinStimulusStructureSulfhydryl CompoundsSystemTestingTherapeuticTimeTissue EngineeringTissue TherapyTissuesTractionWorkbioscaffoldcell assemblycell typecomputational pipelinescritical limb Ischemiacrosslinkdensityendothelial stem cellimprovedin vivoindividualized medicineinduced pluripotent stem celllimb amputationlimb ischemianecrotic tissueneovascularneovascularizationnon-invasive monitorpolarized cellpreservationresponseself assemblyspatiotemporalstem cellstherapeutically effectivevasculogenesis
项目摘要
Dynamic ECM-Mimicking Biomaterials for Ischemia Treatment
Peripheral artery disease (PAD) is the third most common cause of cardiovascular morbidity worldwide, present
in 20% of the population over 65. If PAD is not treated, it can progress to critical limb ischemia, resulting in tissue
necrosis and eventual limb amputation. Vasculogenesis, the process of de novo vessel formation from progenitor
cells, may prove an effective therapeutic strategy. Vasculogenesis may be accomplished by delivering vascular
progenitor cells derived from human induced pluripotent stem cells (hiPSCs-EPs), which have recently emerged
as a promising, patient-specific therapy. However, the optimal conditions for iPSCs-EPs engraftment and
anastomosis with the host vasculature are unclear, specifically, since the underlying molecular mechanisms that
guide these cells' self-assembly into vascular networks are poorly understood.
To overcome this hurdle, we propose to develop engineered vasculogenic hydrogels, presenting tunable
cues at the cell-matrix interface, that can enhance the therapeutic vasculogenesis of iPSC-EPs for
peripheral ischemia recovery and define the underlying mechanisms through which matrix properties
control vasculogenesis.
Previous work by us and others has shown that stable vascular network formation depends on both cell type and
matrix properties such as stiffness and degradability. Highly degradable matrices such as collagen may support
vasculogenesis initially, but long-term stability is challenging. Furthermore, these matrix properties are coupled
and impact endothelial and perivascular cell sprouting at different time scales in neo-vascular network formation.
Therefore, we hypothesize that temporal, in situ control over local matrix mechanics and degradability in
synthetic matrices will synergistically regulate the vascular morphogenesis of hiPSC-EPs, lead to stable, mature
vascular network formation and improve hind limb ischemia recovery. To test our hypothesis, we propose a
hybrid interpenetrating hydrogel network (IPN) comprised of collagen and norbornene-modified hyaluronic acid
(Coll/NorHA). This system has the advantage of combining the natural cues presented by collagen binding sites
and fibrous architecture with the in situ dynamic tunability of synthetic NorHA. Our goal is to 1) elucidate the
interplay between time-dependent matrix properties and mechanisms that govern vascular network development
and 2) enhance therapeutic vasculogenesis for PAD. In Aim 1, we will modulate the elasticity in these hydrogels
using in situ cross-linking reactions. We will study how stiffening at specific timepoints impacts the resulting
vasculogenic response both in vitro and in vivo in a skin fold model. In a complementary approach to Aim 1, in
Aim 2, we will isolate the effects of matrix degradability on iPSC-EPs vasculogenic potential using Coll/NorHA
IPNs in which proteolytic susceptibility is tuned with matrix metalloprotease-degradable peptides. In Aim 3, we
will test the synergistic impact of coupling matrix mechanics and degradability on iPSC-derived capillary plexus
formation. Specifically, we will elucidate how the maturation level of the in vitro grown vascular plexus enables
in vivo perfusion with host vasculature.
In summary, we propose to enhance therapeutic vasculogenesis of iPSC-EPs for peripheral artery disease
treatment through control of engineered matrix properties using a tunable Coll/NorHA IPN that mimics the
hierarchical temporal structure of native ECM. Elucidating the interplay between matrix properties and
mechanisms that govern vascular network development will identify angiogenic biomaterials that may be
deployed in the clinic to improve patients' vascular health and aid in disease modeling.
用于缺血治疗的动态 ECM 模拟生物材料
外周动脉疾病(PAD)是全球心血管疾病发病率第三大常见原因,目前
65 岁以上人群中有 20% 存在这种情况。如果不治疗 PAD,可能会发展为严重的肢体缺血,导致组织缺血
坏死并最终截肢。血管发生,祖细胞从头形成血管的过程
细胞,可能被证明是一种有效的治疗策略。血管生成可以通过输送血管来完成
最近出现的源自人类诱导多能干细胞(hiPSC-EP)的祖细胞
作为一种有前途的、针对患者的治疗方法。然而,iPSC-EP 植入的最佳条件和
具体来说,与宿主脉管系统的吻合尚不清楚,因为其潜在的分子机制
引导这些细胞自组装成血管网络的机制尚不清楚。
为了克服这一障碍,我们建议开发工程血管生成水凝胶,提供可调的
细胞-基质界面处的线索,可以增强 iPSC-EP 的治疗性血管生成
外周缺血恢复并定义基质特性的潜在机制
控制血管生成。
我们和其他人之前的工作表明,稳定的血管网络形成取决于细胞类型和
基质特性,例如刚度和可降解性。高度可降解的基质(例如胶原蛋白)可能支持
血管生成最初,但长期稳定性具有挑战性。此外,这些矩阵属性是耦合的
并影响新血管网络形成中不同时间尺度的内皮细胞和血管周围细胞的萌芽。
因此,我们假设对局部基质力学和降解性进行时间、原位控制
合成基质将协同调节 hiPSC-EP 的血管形态发生,导致稳定、成熟
血管网络形成,改善后肢缺血恢复。为了检验我们的假设,我们提出
由胶原蛋白和降冰片烯修饰透明质酸组成的混合互穿水凝胶网络 (IPN)
(科尔/诺哈)。该系统的优点是结合了胶原蛋白结合位点呈现的自然线索
以及具有合成 NorHA 的原位动态可调性的纤维结构。我们的目标是 1) 阐明
时间依赖性基质特性与控制血管网络发育的机制之间的相互作用
2) 增强 PAD 的治疗性血管生成。在目标 1 中,我们将调节这些水凝胶的弹性
使用原位交联反应。我们将研究特定时间点的硬化如何影响结果
皮肤褶皱模型中体外和体内的血管生成反应。在目标 1 的补充方法中,
目标 2,我们将使用 Coll/NorHA 分离基质降解性对 iPSC-EP 血管生成潜力的影响
IPN,其中蛋白水解敏感性通过基质金属蛋白酶可降解肽进行调节。在目标 3 中,我们
将测试耦合基质力学和降解性对 iPSC 衍生毛细血管丛的协同影响
形成。具体来说,我们将阐明体外生长的血管丛的成熟水平如何能够
宿主脉管系统的体内灌注。
总之,我们建议增强 iPSC-EP 治疗外周动脉疾病的血管生成
通过使用模拟的可调谐 Coll/NorHA IPN 控制工程基质特性来进行治疗
原生 ECM 的分层时间结构。阐明矩阵属性和
控制血管网络发育的机制将识别可能的血管生成生物材料
在诊所中部署以改善患者的血管健康并帮助建立疾病模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Janeta Zoldan其他文献
Janeta Zoldan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Janeta Zoldan', 18)}}的其他基金
Dynamic ECM-Mimicking Biomaterials for Ischemia Treatment
用于缺血治疗的动态 ECM 模拟生物材料
- 批准号:
10540794 - 财政年份:2021
- 资助金额:
$ 62.22万 - 项目类别:
Painting Vasculature with Photosensitive Liposomes
用光敏脂质体绘制脉管系统
- 批准号:
10019353 - 财政年份:2019
- 资助金额:
$ 62.22万 - 项目类别:
Painting Vasculature with Photosensitive Liposomes
用光敏脂质体绘制脉管系统
- 批准号:
10224193 - 财政年份:2019
- 资助金额:
$ 62.22万 - 项目类别:
相似海外基金
Matrix biophysics and pericyte mechanobiology in (patho)physiological angiogenesis
(病理)生理性血管生成中的基质生物物理学和周细胞力学生物学
- 批准号:
10680994 - 财政年份:2023
- 资助金额:
$ 62.22万 - 项目类别:
Identifying microscopic vasculature within entorhinal cortex in healthy aging and its proximity to pathology profiles in Alzheimer's disease
识别健康衰老过程中内嗅皮层内的微观脉管系统及其与阿尔茨海默氏病病理特征的接近程度
- 批准号:
10657895 - 财政年份:2023
- 资助金额:
$ 62.22万 - 项目类别:
Dynamic ECM-Mimicking Biomaterials for Ischemia Treatment
用于缺血治疗的动态 ECM 模拟生物材料
- 批准号:
10540794 - 财政年份:2021
- 资助金额:
$ 62.22万 - 项目类别:
Cross-species vascular anatomy and sensitivity to intraocular pressure in glaucoma
青光眼的跨物种血管解剖学和对眼压的敏感性
- 批准号:
10493356 - 财政年份:2021
- 资助金额:
$ 62.22万 - 项目类别:
Cross-species vascular anatomy and sensitivity to intraocular pressure in glaucoma
青光眼的跨物种血管解剖学和对眼压的敏感性
- 批准号:
10211782 - 财政年份:2021
- 资助金额:
$ 62.22万 - 项目类别: