Leveraging nanotechnology and skin delivery to drive selective immune tolerance for Multiple Sclerosis
利用纳米技术和皮肤递送来驱动多发性硬化症的选择性免疫耐受
基本信息
- 批准号:10012971
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAllergensAllergy ShotAnimal ModelAntibodiesAntigen TargetingAntigen-Presenting CellsAntigensAutoantigensAutoimmune DiseasesAutoimmune ProcessAutoimmunityAutomobile DrivingAxonB-LymphocytesBiological AssayBiological MarkersBiological Response ModifiersBlindnessBrainCellsClinicClinical DataCuesDangerousnessDataDelayed HypersensitivityDiseaseDoseEngineeringEnsureEnvironmentExperimental Autoimmune EncephalomyelitisFamilyFluorescenceGenerationsGoalsGrowthImmuneImmune TargetingImmune ToleranceImmune signalingImmune systemImmunityImmunocompromised HostImmunologicsIn VitroInfectionInflammationInflammatoryInjectionsLengthLibrariesLifeLigandsMentorsMolecularMotorMultiple SclerosisMyelinMyelin SheathNanotechnologyNeedlesNeuraxisNeurologicNeurophysiology - biologic functionOnset of illnessOrganPainParalysedPathogen detectionPathway interactionsPatientsPatternPeptidesPharmaceutical PreparationsPhenotypePolymersPopulationPredispositionQuality of lifeReceptor SignalingRegulatory T-LymphocyteResearchRiskRoleSelf AdministrationSignal PathwaySignal TransductionSiteSkinSpecificitySpinal CordSurfaceSurveysSymptomsT-LymphocyteTestingTherapeuticTherapeutic EffectTissuesToll-Like Receptor PathwayToll-like receptorsTracerTreatment EfficacyVeteransVisual impairmentWomanbasecareercareer developmentcell typecurative treatmentscytotoxicdensitydesigndraining lymph nodeeffective therapyefficacy testingexperienceextracellularimmune functionimmunoregulationimprovedin vivoin vivo imagingintradermal injectionmotor deficitmouse modelmultiple sclerosis patientmultiple sclerosis treatmentnanomaterialsnanotechnology platformneuroinflammationnovelpathogenpreservationpreventrestraintside effectsubcutaneoustherapeutic evaluationtherapy developmenttrafficking
项目摘要
Multiple sclerosis (MS) is an autoimmune disease that develops when the immune system loses tolerance for
myelin in the sheath wrapping axons of the central nervous system (CNS). Damage to the myelin sheath can
result in paralysis, vision impairment, and other neurological complications that significantly diminishes MS
patient quality of life. There is no cure and many MS therapies also eliminate beneficial immunity. One
experimental strategy to specifically counter autoimmunity is the generation of regulatory cell types, such as
regulatory T cells (TREGS). The goal of such approaches is to selectively suppress the inflammatory T and B cells
that are overactive and target myelin through cytotoxic pathways or antibody generation, respectively.
Generation of antigen-specific TREGS and tolerance that counter autoimmunity could provide long-lasting
treatments, while preserving protective immunity. A new idea to promote TREGS is suppression of toll-like receptor
(TLR) signaling. TLRs regulate a power set of pathways that regulate immunity and evolved to detect the
pathogens associated molecular patterns to initiate inflammation and eliminate dangerous pathogens. While
TLRs are well known for their role in pathogen detection, surprising new studies show TLRs are also over-active
during autoimmunity. To harness TLR signaling, the Jewell lab developed a nanotechnology platform where a
regulatory TLR ligand (GpG) is synthesized with myelin self-antigen (MOG) to ensure immune cells receive both
the signals to promote myelin-specific TREGS. Since these nanomaterials – termed immune polyelectrolyte
multilayers (iPEMs) – are built entirely from the immune signals, they display the cues at a high density to potently
modulate immune function. Administration of the iPEMs containing GpG and MOG prevents disease-associated
paralysis in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS.
While promising, these effects were transient, and required multiple, high doses of iPEM injections. To overcome
these challenges, I will develop microneedle arrays (MNAs) to deliver iPEMs built from myelin self- antigen and
regulatory TLR ligands directly to the skin. MNAs are small patches (~1 cm dia.) with polymer needles several
hundred microns in length, designed to target the immune-rich layers in skin. Skin is our largest immunological
organ and contains a high density of immune cells, with specialized phenotypes that are constantly surveying
the skin for foreign pathogens. Recent evidence indicates that some of these immune cells have a unique ability
to promote TREGS in vivo, which were then able to suppress symptoms of paralysis in a common mouse model
of MS. These exciting and recent results suggest that if the tolerance biased immune cells in skin could be
harnessed through their TLR signaling pathways, they may be directed towards a tolerogenic phenotype.
The central hypothesis of this VA CDA-2 proposal is that tolerogenic iPEMs delivered through MNAs will drive
tolerogenic phenotypes in skin-resident antigen-presenting cells that will migrate to draining lymph nodes (LNs)
and instruct T cells toward a TREG phenotype that restrains autoimmunity in a mouse model of MS. To test this
hypothesis, I have designed three specific aims to: 1) assemble iPEM coatings on MNAs and predict their efficacy
in vitro, 2) deliver iPEMs to skin using MNAs to test efficacy and specificity in mouse models of MS, and 3) test
the role of TREGS in promoting efficacy of iPEM coated MNAs and investigate tolerance biomarkers in skin-
draining LNs. This approach will provide two unique opportunities to address both disease and quality of life
issues facing Veterans and their families. First, leveraging the unique immune environment in skin to achieve
antigen-specific tolerance for MS could improve therapeutic efficacy and specificity. Second, MNAs can be
applied independently by MS patients with motor deficits, which would improve independence and compliance.
Collectively, achieving these goals would elevate Veteran MS patient quality of life.
多发性硬化症 (MS) 是一种自身免疫性疾病,当免疫系统失去耐受性时就会发生。
包裹中枢神经系统 (CNS) 轴突的髓鞘中的髓鞘会受到损害。
导致瘫痪、视力障碍和其他神经系统并发症,从而显着减少多发性硬化症
患者的生活质量无法治愈,许多多发性硬化症疗法也会消除有益的免疫力。
专门对抗自身免疫的实验策略是产生调节细胞类型,例如
调节性 T 细胞 (TREGS) 的目标是选择性抑制炎症 T 细胞和 B 细胞。
过度活跃并分别通过细胞毒性途径或抗体生成靶向髓磷脂。
产生抗原特异性 TREGS 和抵抗自身免疫的耐受性可以提供持久的效果
治疗,同时保留保护性免疫力,促进 TREGS 的一个新想法是抑制 Toll 样受体。
(TLR) 信号传导调节一组强大的途径,这些途径调节免疫并进化为检测。
病原体相关的分子模式引发炎症并消除危险的病原体。
TLR 因其在病原体检测中的作用而闻名,令人惊讶的新研究表明 TLR 也过度活跃
为了利用 TLR 信号传导,Jewell 实验室开发了一个纳米技术平台,其中
调节性 TLR 配体 (GpG) 与髓磷脂自身抗原 (MOG) 合成,以确保免疫细胞同时接收
促进髓磷脂特异性 TREGS 的信号,因为这些纳米材料被称为免疫聚电解质。
多层膜(iPEM)——完全由免疫信号构建,它们以高密度有效地显示信号
调节免疫功能。含有 GpG 和 MOG 的 iPEM 可以预防相关疾病。
实验性自身免疫性脑脊髓炎(EAE)小鼠 MS 模型中的瘫痪。
虽然前景乐观,但这些影响是短暂的,需要多次、高剂量的 iPEM 注射才能克服。
这些挑战,我将开发微针阵列(MNA)来提供由髓鞘质自身抗原构建的 iPEM
直接作用于皮肤的调节性 TLR 配体是带有多个聚合物针的小贴片(直径约 1 厘米)。
长度为数百微米,旨在针对皮肤中富含免疫的层,皮肤是我们最大的免疫层。
器官,含有高密度的免疫细胞,具有不断调查的特殊表型
最近的证据表明,其中一些免疫细胞具有独特的能力。
在体内促进 TREGS,从而能够抑制常见小鼠模型中的瘫痪症状
这些令人兴奋的最新结果表明,如果皮肤中的耐受性偏向免疫细胞可以
通过 TLR 信号通路的利用,它们可能会产生耐受性表型。
VA CDA-2 提案的中心假设是,通过 MNA 传递的耐受性 iPEM 将驱动
皮肤驻留抗原呈递细胞中的耐受性表型将迁移至引流淋巴结 (LN)
并指导 T 细胞形成抑制多发性硬化症小鼠模型自身免疫的 TREG 表型。
假设,我设计了三个具体目标:1)在 MNA 上组装 iPEM 涂层并预测其功效
体外,2) 使用 MNA 将 iPEM 递送至皮肤,以测试多发性硬化症小鼠模型的功效和特异性,以及 3) 测试
TREGS 在促进 iPEM 涂层 MNA 功效中的作用并研究皮肤中生物标志物的耐受性
这种方法将为解决疾病和生活质量提供两个独特的机会。
退伍军人及其家人面临的问题首先,利用皮肤独特的免疫环境来实现。
其次,MNA 可以提高 MS 的抗原特异性耐受性。
由患有运动缺陷的多发性硬化症患者独立应用,这将提高独立性和依从性。
总的来说,实现这些目标将提高退伍多发性硬化症患者的生活质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Smith Oakes其他文献
Robert Smith Oakes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Smith Oakes', 18)}}的其他基金
Leveraging nanotechnology and skin delivery to drive selective immune tolerance for Multiple Sclerosis
利用纳米技术和皮肤递送来驱动多发性硬化症的选择性免疫耐受
- 批准号:
10767768 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Leveraging nanotechnology and skin delivery to drive selective immune tolerance for Multiple Sclerosis
利用纳米技术和皮肤递送来驱动多发性硬化症的选择性免疫耐受
- 批准号:
10456094 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Leveraging nanotechnology and skin delivery to drive selective immune tolerance for Multiple Sclerosis
利用纳米技术和皮肤递送来驱动多发性硬化症的选择性免疫耐受
- 批准号:
10207467 - 财政年份:2020
- 资助金额:
-- - 项目类别:
相似国自然基金
空气污染与食物过敏原早期暴露对儿童第二波过敏性疾病的影响研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
热加工对花生基质中过敏原胃肠致敏途径影响的分子机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于分子动力学评估加工对鸡蛋过敏原结构与致敏性的影响及脱敏机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
尘螨过敏原诱导的细胞自噬通过β-catenin/Smad2/3-Snail信号途径影响气道上皮紧密连接的机制研究
- 批准号:81900028
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
十八碳不饱和脂肪酸对牛乳α-乳白蛋白和β-乳球蛋白致敏性的影响及其作用机制
- 批准号:31872887
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Early life exposure to metal mixtures: impacts on asthma and lungdevelopment
生命早期接触金属混合物:对哮喘和肺部发育的影响
- 批准号:
10678307 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Early Life Pulmonary Infection, Microbiome and Trained Innate Immunity
生命早期肺部感染、微生物组和经过训练的先天免疫
- 批准号:
10677304 - 财政年份:2023
- 资助金额:
-- - 项目类别:
FEASible: Sensing Factors of Environment, Activity, and Sleep to Validate Metabolic Health Burden Among Latina Women
可行:通过环境、活动和睡眠的传感因素来验证拉丁裔女性的代谢健康负担
- 批准号:
10639447 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Chitin and chitinases in SARS-CoV-2 infection
SARS-CoV-2 感染中的几丁质和几丁质酶
- 批准号:
10742004 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Developing RNA Vaccines to Treat Peanut Hypersensitivity
开发治疗花生过敏的 RNA 疫苗
- 批准号:
10570339 - 财政年份:2023
- 资助金额:
-- - 项目类别: