Optimization of PET Image Reconstruction for Lesion Detection

用于病变检测的 PET 图像重建优化

基本信息

  • 批准号:
    10041119
  • 负责人:
  • 金额:
    $ 9.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2022-04-30
  • 项目状态:
    已结题

项目摘要

Optimization of PET Image Reconstruction for Lesion Detection Abstract PET is a molecular imaging modality widely used in oncology studies due to its high sensitivity and the potential of early diagnosis. For neuroendocrine tumors (NETs), 68Ga-DOTATATE PET has been recently used in clinical routine for imaging NETs in adult and pediatric patients since 2016. It plays an important role in the diagnosis and staging of NETs. However, compared to 18F-FDG PET, the image quality of 68Ga-DOTATATE PET is lower due to much larger positron range, shorter half-life, and lower dose administration limited by generator capacity. All of these compromises the lesion detectability of 68Ga-DOTATATE PET, especially for small lesions, and can potentially lead to inaccurate NET diagnosis. As 68Ga-DOTATATE PET is increasingly used in clinics, there is an urgent and unmet need to further optimize 68Ga-DOTATATE PET/CT imaging for NET detection. Recently, data-driven methods have been developed for PET image denoising, where the PET system model is not considered. As the tumor-to-background ratio of 68Ga-DOTATATE PET is greater than 18F-FDG PET, the lesion recovery of 68Ga-DOTATATE PET can be hugely influenced by the smoothing effects as well as potential mismatches between training and testing datasets. In this study, we propose a novel data- informed and lesion detection-driven image reconstruction framework. The PET system model, image denoising module, and lesion-detection module will all be included in this reconstruction framework. The two specific aims of this exploratory proposal are (1) to develop a lesion detection-driven PET image reconstruction framework and validate it based on comprehensive computer simulations, (2) to apply the proposed reconstruction framework to existing clinical 68Ga-DOTATATE PET/CT datasets and test it based on various figure-of-merits. We expect that the integrated outcome of the specific aims will be a novel and robust image reconstruction framework to better recover lesions in a 68Ga- DOTATATE PET scan, which is essential for NET managements.
用于病变检测的 PET 图像重建优化 抽象的 PET 是一种广泛应用于肿瘤学研究的分子成像方式,因为它具有高灵敏度和 早期诊断的潜力。对于神经内分泌肿瘤 (NET),68Ga-DOTATATE PET 已被 自 2016 年以来,最近在成人和儿童患者的 NET 成像临床常规中使用。 在 NET 的诊断和分期中发挥着重要作用。然而,与 18F-FDG PET 相比,图像 68Ga-DOTATATE PET 的质量较低,因为正电子射程更大、半衰期更短,并且 剂量管理受发生器容量限制。所有这些都会影响病变的可检测性 68Ga-DOTATATE PET,特别是对于小病变,可能会导致 NET 不准确 诊断。随着68Ga-DOTATATE PET越来越多地应用于临床,存在着迫切且未满足的需求 进一步优化 68Ga-DOTATATE PET/CT 成像以进行 NET 检测。最近,数据驱动 PET 图像去噪的方法已经开发出来,而 PET 系统模型还没有 经过考虑的。由于 68Ga-DOTATATE PET 的肿瘤与背景比大于 18F-FDG PET, 68Ga-DOTATATE PET 的病变恢复也会受到平滑效果的巨大影响 作为训练和测试数据集之间潜在的不匹配。在这项研究中,我们提出了一种新颖的数据—— 知情且病变检测驱动的图像重建框架。 PET系统模型、图像 去噪模块和病变检测模块都将包含在这个重建框架中。 该探索性提案的两个具体目标是 (1) 开发病变检测驱动的 PET 图像重建框架并基于全面的计算机模拟对其进行验证,(2) 将提出的重建框架应用于现有的临床 68Ga-DOTATATE PET/CT 数据集 并根据各种品质因数对其进行测试。我们期望具体目标的综合成果 将是一个新颖且强大的图像重建框架,以更好地恢复 68Ga- DOTATATE PET 扫描,这对于 NET 管理至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kuang Gong其他文献

Kuang Gong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kuang Gong', 18)}}的其他基金

Optimization of Tau PET Imaging for Alzheimer's Disease through Deep Learning-Based Image Reconstruction
通过基于深度学习的图像重建优化阿尔茨海默病的 Tau PET 成像
  • 批准号:
    10501804
  • 财政年份:
    2022
  • 资助金额:
    $ 9.43万
  • 项目类别:
Optimization of Tau PET Imaging for Alzheimer's Disease through Deep Learning-Based Image Reconstruction
通过基于深度学习的图像重建优化阿尔茨海默病的 Tau PET 成像
  • 批准号:
    10933186
  • 财政年份:
    2022
  • 资助金额:
    $ 9.43万
  • 项目类别:
Optimization of PET Image Reconstruction for Lesion Detection
用于病变检测的 PET 图像重建优化
  • 批准号:
    10206141
  • 财政年份:
    2020
  • 资助金额:
    $ 9.43万
  • 项目类别:
Correction of Partial Volume Effects in PET for Alzheimer's Disease Using Unsupervised Deep Learning
使用无监督深度学习校正阿尔茨海默病 PET 中的部分体积效应
  • 批准号:
    9974892
  • 财政年份:
    2020
  • 资助金额:
    $ 9.43万
  • 项目类别:

相似国自然基金

单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
  • 批准号:
    82373465
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
  • 批准号:
    82303926
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
  • 批准号:
    82302160
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
  • 批准号:
    82300208
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
  • 批准号:
    82372499
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Sleep and Cardiometabolic Subgroup Discovery and Risk Prediction in United States Adolescents and Young Adults: A Multi-Study Multi-Domain Analysis of NHANES and NSRR
美国青少年和年轻人的睡眠和心脏代谢亚组发现和风险预测:NHANES 和 NSRR 的多研究多领域分析
  • 批准号:
    10639360
  • 财政年份:
    2023
  • 资助金额:
    $ 9.43万
  • 项目类别:
Marketing Monitoring Core (MMC)
营销监控核心 (MMC)
  • 批准号:
    10666074
  • 财政年份:
    2023
  • 资助金额:
    $ 9.43万
  • 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
  • 批准号:
    10651082
  • 财政年份:
    2023
  • 资助金额:
    $ 9.43万
  • 项目类别:
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
  • 批准号:
    10797056
  • 财政年份:
    2023
  • 资助金额:
    $ 9.43万
  • 项目类别:
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
  • 批准号:
    10710712
  • 财政年份:
    2023
  • 资助金额:
    $ 9.43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了