Optimization of Tau PET Imaging for Alzheimer's Disease through Deep Learning-Based Image Reconstruction
通过基于深度学习的图像重建优化阿尔茨海默病的 Tau PET 成像
基本信息
- 批准号:10501804
- 负责人:
- 金额:$ 48.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAducanumabAffinityAlzheimer&aposs DiseaseAlzheimer&aposs disease diagnosisApplications GrantsBehavior DisordersBindingBiological MarkersBrain InjuriesBrain regionCerebrovascular CirculationClinicalClinical TrialsCognitiveDataData SetDepositionDevelopmentDiagnosisEarly DiagnosisEarly treatmentFDA approvedFamilyGenerationsGoalsHippocampus (Brain)HourImageImpaired cognitionKineticsLabelLongitudinal StudiesMeasuresMemory LossMeningesMethodsMonitorNatureNeurodegenerative DisordersNeurotransmittersNoiseOutcomePatientsPatternPerformancePerfusionPersonsPhysicsPopulationPositron-Emission TomographyProtocols documentationRecoveryResolutionSample SizeScanningSchemeSignal TransductionStagingSynapsesSystemTestingThinnessTimeTracerTrainingUnited StatesUpdateattenuationbasedeep learningdenoisingdensitydrug developmententorhinal cortexhuman old age (65+)image reconstructionimaging biomarkerimaging modalityimprovedin vivokinetic modelneuroinflammationpain reliefparametric imagingpre-clinicalreconstructionsuccesstau Proteinstau aggregationuptakeβ-amyloid burden
项目摘要
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by memory loss, cognitive
impairments, and behavioral disorders. 6.2 million people aged 65 and older are living with AD in the United
States in 2021. Earlier diagnosis of AD holds particular significance as therapies are most effective during the
pre-symptomatic stages before irreversible brain damage has occurred. Tau neurofibrillary tangles (NFTs),
accumulating decades before symptomatic onset, can indicate the pre-symptomatic stages. According to Braak
staging, tau NFTs start from transentorhinal, then spreading to hippocampus and other cortices at later stages.
Detecting tau NFTs during early stages and clearly resolving their patterns is essential for early diagnosis and
treatment monitoring of AD. With recent breakthroughs in tau tracer developments, Positron Emission
Tomography (PET) can detect accumulation of tau NFTs in vivo. However, due to signal-to-noise ratio (SNR)
and resolution limits of PET, accurate recovery of tau retention patterns in thin cortical regions is difficult. This is
especially true for early stages when tau signal is weak. Additionally, recent longitudinal studies show that the
accumulation change of tau deposits detected by PET is around 3 to 6 % per year for the AD group, and less for
the preclinical AD group. This small annual change further challenges the signal detectability of current PET
systems. Furthermore, 18F-MK-6240 is a newly developed tau tracer with higher affinity to tau NFTs and no off-
target bindings near early Braak-staging regions, which makes it highly promising for early AD diagnosis.
However, one issue with 18F-MK-6240 is the off-target bindings in the meninges. Given the thin nature of the
cortical ribbon and its proximity to the meninges, quantitative accuracy of tau accumulation is significantly
compromised. Consequently, there are unmet needs to further improve PET resolution and SNR for tau imaging.
This grant application proposes deep learning (DL)-based image reconstruction methods that can improve the
resolution and signal-to-noise ratio (SNR) of tau imaging. The four specific aims of this proposal are (1) to
develop DL-based static PET image reconstruction; (2) to develop DL-based image reconstruction for dynamic
PET; (3) to develop frameworks that can rapidly produce high-quality parametric images; and (4) to apply the
proposed frameworks to 18F-MK-6240 imaging datasets. We expect the integrated outcome of the specific aims
will be robust and clinically effective frameworks that can generate static and parametric images with improved
resolution and SNR from static and simplified dynamic tau PET imaging.
抽象的
阿尔茨海默病(AD)是一种进行性神经退行性疾病,其特征是记忆丧失、认知能力丧失
在美国,65 岁及以上的 620 万人患有 AD。
2021 年各州。AD 的早期诊断具有特别重要的意义,因为治疗在 2021 年最有效
发生不可逆脑损伤之前的症状前阶段。
布拉克认为,在症状出现前数十年的积累可以表明症状出现前的阶段。
在分期中,tau NFT 从内嗅开始,然后在后期扩散到海马和其他皮质。
在早期阶段检测 tau NFT 并清楚地解析其模式对于早期诊断和治疗至关重要。
随着最近 tau 示踪剂开发的突破,正电子发射
断层扫描 (PET) 可以检测体内 tau NFT 的积累,但由于信噪比 (SNR) 的原因。
由于 PET 的分辨率限制,在薄皮质区域准确恢复 tau 保留模式很困难。
此外,最近的纵向研究表明,对于 tau 信号较弱的早期阶段尤其如此。
AD 组通过 PET 检测到的 tau 沉积物积累变化每年约为 3% 至 6%,而 AD 组则较小。
临床前 AD 组的这一年度小变化进一步挑战了当前 PET 的信号检测能力。
此外,18F-MK-6240 是一种新开发的 tau 示踪剂,对 tau NFT 具有更高的亲和力,且无脱色现象。
目标结合靠近早期 Braak 分期区域,这使得它对于早期 AD 诊断非常有希望。
然而,18F-MK-6240 的一个问题是脑膜的脱靶结合。
皮质带及其邻近脑膜,tau 积累的定量准确性显着
经检查,进一步提高 tau 成像的 PET 分辨率和 SNR 的需求尚未得到满足。
该资助申请提出了基于深度学习(DL)的图像重建方法,可以改善
该提案的四个具体目标是 (1) 提高 tau 成像的分辨率和信噪比 (SNR)。
开发基于DL的静态PET图像重建;(2)开发基于DL的动态图像重建;
PET;(3)开发能够快速生成高质量参数化图像的框架;以及(4)应用
我们期望针对 18F-MK-6240 成像数据集提出框架的综合结果。
将是强大且临床有效的框架,可以生成具有改进的静态和参数图像
静态和简化的动态 tau PET 成像的分辨率和信噪比。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kuang Gong其他文献
Kuang Gong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kuang Gong', 18)}}的其他基金
Optimization of Tau PET Imaging for Alzheimer's Disease through Deep Learning-Based Image Reconstruction
通过基于深度学习的图像重建优化阿尔茨海默病的 Tau PET 成像
- 批准号:
10933186 - 财政年份:2022
- 资助金额:
$ 48.06万 - 项目类别:
Optimization of PET Image Reconstruction for Lesion Detection
用于病变检测的 PET 图像重建优化
- 批准号:
10206141 - 财政年份:2020
- 资助金额:
$ 48.06万 - 项目类别:
Correction of Partial Volume Effects in PET for Alzheimer's Disease Using Unsupervised Deep Learning
使用无监督深度学习校正阿尔茨海默病 PET 中的部分体积效应
- 批准号:
9974892 - 财政年份:2020
- 资助金额:
$ 48.06万 - 项目类别:
Optimization of PET Image Reconstruction for Lesion Detection
用于病变检测的 PET 图像重建优化
- 批准号:
10041119 - 财政年份:2020
- 资助金额:
$ 48.06万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 48.06万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 48.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 48.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 48.06万 - 项目类别:
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 48.06万 - 项目类别:
EU-Funded