CLAMP-CS: a Cloud-based, Service-oriented, high-performance Natural Language Processing Platform for Healthcare
CLAMP-CS:基于云、面向服务的高性能医疗自然语言处理平台
基本信息
- 批准号:10011177
- 负责人:
- 金额:$ 50.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:Active LearningAddressAdoptedAdoptionAlgorithmsArchitectureAttentionBeliefClinicalClinical ResearchClosure by clampCloud ComputingCommunitiesCustomDataDevelopmentDiagnosisElectronic Health RecordEnvironmentFast Healthcare Interoperability ResourcesGenerationsGrantGrowthHealth SciencesHealthcareHospital AdministrationInternationalLanguageLicensingMachine LearningMedicalModelingNatural Language ProcessingNatural Language Processing pipelineOperations ResearchOutputPatientsPerformancePsychological TransferRecordsResearchServicesSystemTechnologyTexasTimeTranslational ResearchUniversitiesWorkactive methodbaseclinical applicationclinical databasecloud basedcommercializationcostdata modelingdeep learningdeep learning algorithmexperienceimprovedinsightinteroperabilitylanguage traininglearning algorithmmodel buildingnext generationnovelpreventrapid growthtooluser-friendlyweb app
项目摘要
Project Summary
Wide adoption of electronic health records (EHRs) has led to huge clinical databases, which enable the rapid
growth of healthcare analytics market. One particular challenge for analyzing EHRs data is that much detailed
patient information is embedded in clinical documents and not directly available for downstream analysis.
Therefore, clinical natural language processing (NLP) technologies, which can unlock information embedded in
clinical narratives, have received great attention, with an estimated global market of $2.65 billion by 2021 . In our
previous work, we have developed CLAMP (Clinical Language Annotation, Modeling, and Processing), a clinical
NLP tool with demonstrated superior performance through multiple international NLP challenges and a large
user community (over 1,500 downloads by users from over 700 organizations). Commercialization of CLAMP by
Melax Technologies Inc. has been successful (i.e., with a dozen licensed customers now); but it also reveals its
limitations as a desktop application in the Cloud era. Therefore, we propose to extend CLAMP to a new Cloud-
based, Service-oriented platform (called CLAMP-CS), which will address the identified challenges by: 1)
improving clinical NLP performance and reducing annotation cost by leveraging the state-of-the-art algorithms
such as deep learning, active learning and transfer learning and making them accessible to less experienced
users; 2) following new service-oriented architectures to make CLAMP-CS available via SaaS and PaaS, ready
for Cloud-based development and deployment; and 3) improving CLAMP-CS interoperability with downstream
applications following two widely used standard representations: HL7 FHIR (Fast Healthcare Interoperability
Resources) and OMOP CMD (Common Data Model), to support the use cases in clinical operations and research
respectively. With these advanced features, we believe CLAMP-CS will be a leading clinical NLP system in the
market and it will accelerate the adoption of NLP technology for diverse healthcare applications and
clinical/translational research.
项目概要
电子健康记录 (EHR) 的广泛采用催生了庞大的临床数据库,这使得快速诊断成为可能。
医疗保健分析市场的增长。分析 EHR 数据的一项特殊挑战是详细程度
患者信息嵌入临床文档中,不能直接用于下游分析。
因此,临床自然语言处理(NLP)技术可以解锁嵌入的信息
临床叙述受到了极大关注,预计到 2021 年全球市场将达到 26.5 亿美元。在我们的
在之前的工作中,我们开发了 CLAMP(临床语言注释、建模和处理)
NLP 工具在多项国际 NLP 挑战赛和大量研究中展现出卓越的性能
用户社区(来自 700 多个组织的用户超过 1,500 次下载)。 CLAMP 的商业化
Melax Technologies Inc. 取得了成功(即现在拥有十几个授权客户);但它也揭示了它的
云时代桌面应用程序的局限性。因此,我们建议将 CLAMP 扩展到新的 Cloud-
基于服务的平台(称为 CLAMP-CS),它将通过以下方式解决已确定的挑战:1)
利用最先进的算法提高临床 NLP 性能并降低注释成本
例如深度学习、主动学习和迁移学习,并让经验不足的人也能接触到它们
用户; 2) 遵循新的面向服务的架构,通过 SaaS 和 PaaS 提供 CLAMP-CS,做好准备
用于基于云的开发和部署; 3) 提高 CLAMP-CS 与下游的互操作性
应用程序遵循两种广泛使用的标准表示形式: HL7 FHIR(快速医疗互操作性
资源)和 OMOP CMD(通用数据模型),以支持临床操作和研究中的用例
分别。凭借这些先进的功能,我们相信 CLAMP-CS 将成为该领域领先的临床 NLP 系统
市场,它将加速 NLP 技术在各种医疗保健应用中的采用
临床/转化研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Frank J. Manion其他文献
Frank J. Manion的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mentoring the next generation of researchers at the intersection of opioid use disorder and chronic pain
指导下一代研究人员研究阿片类药物使用障碍和慢性疼痛的交叉点
- 批准号:
10663642 - 财政年份:2023
- 资助金额:
$ 50.35万 - 项目类别:
Diversity in a Dish: Pluripotent Stem Cells in Genetic Analysis and Disease Modeling
培养皿中的多样性:遗传分析和疾病建模中的多能干细胞
- 批准号:
10608751 - 财政年份:2023
- 资助金额:
$ 50.35万 - 项目类别:
AIDen: An AI-empowered detection and diagnosis system for jaw lesions using CBCT
AIDen:使用 CBCT 的人工智能驱动下颌病变检测和诊断系统
- 批准号:
10383494 - 财政年份:2022
- 资助金额:
$ 50.35万 - 项目类别:
Implementation Research to Optimize ART Delivery for Adolescent Girls and Young Women Living with HIV in Tanzania
优化坦桑尼亚艾滋病毒感染青春期女孩和年轻女性抗逆转录病毒治疗的实施研究
- 批准号:
10547999 - 财政年份:2022
- 资助金额:
$ 50.35万 - 项目类别: