DNA 3.0: Developing novel enzymes for DNA synthesis with deep learning and combinatorial genetics
DNA 3.0:利用深度学习和组合遗传学开发用于 DNA 合成的新型酶
基本信息
- 批准号:10010243
- 负责人:
- 金额:$ 37.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-15 至 2022-01-15
- 项目状态:已结题
- 来源:
- 关键词:Artificial IntelligenceBioinformaticsBiologicalBiological ProcessBiotechnologyCapitalCellsChemicalsChemistryCollectionComputing MethodologiesCost efficiencyCystic FibrosisDNADNA NucleotidylexotransferaseDNA biosynthesisDNA-Directed DNA PolymeraseData SetData Storage and RetrievalDatabasesDevelopmentDiagnosisDiagnosticEnzymesEquipmentEvolutionFeasibility StudiesGenerationsGenesGeneticGenetic DiseasesHIVHeart DiseasesIn VitroIndustrializationIndustryLengthLibrariesLicensingMalignant NeoplasmsMethodsMicrobeModelingModernizationMolecularMolecular BiologyMolecular GeneticsMolecular MachinesMutationNucleotidesOligonucleotidesPerformancePhasePlayPolymerasePopulationPreventionProcessProteinsRandomizedReagentReportingResearch Project GrantsScanningSingle-Stranded DNASmall Business Innovation Research GrantTechnologyTestingTherapeuticTimeLineTrainingVariantWorkbasecombinatorialcostdeep learninggenetic technologyhigh throughput screeninghuman diseaseimprovedin vitro testingmachine learning algorithmmodel developmentnext generationnovelphosphoramiditeprediction algorithmpredictive testresearch and developmentsynthetic biologysynthetic constructtool
项目摘要
Project Summary/Abstract
DNA synthesis has played a key role in the biotechnology revolution. The ready availability of
synthetic DNA oligonucleotides and of genes assembled from them, has been invaluable for
elucidating and unlocking biological function and enabling the new field of synthetic biology which
can create novel cells, enzymes, therapeutics, diagnostics and other reagents of commercial value.
Despite this impact, DNA synthesis uses chemical strategies developed over 30 years ago which
are costly and limited to molecules of 200 nucleotides or less in length.
Next-generation enzymatic DNA synthesis technologies are being explored that use template-
independent DNA polymerases (TIDPs) for controlled addition of nucleotides to a growing DNA
strand. Although advances have been reported recently, enzymatic DNA synthesis is still limited by
the low efficiency of available TIDPs, and specifically by the relative inability of these polymerases
to incorporate 3'-blocked nucleotides.
In this Phase I Small Business Innovation Research (SBIR) project, Primordial Genetics Inc, a
synthetic biology company with differentiated combinatorial genetic technology, and Denovium Inc.,
an artificial intelligence company pioneering novel Al methods for genetic discovery, are joining
forces to develop novel and highly efficient TIDPs for enzymatic DNA synthesis in vitro.
Denovium will use their computational capabilities based on machine learning algorithms to
discover novel TIDPs with the desired activities from proprietary and public databases. Denovium
will also perform proprietary artificial intelligence (AI) scans to determine the functional impact of all
possible mutations on the selected TIDPs. Primordial Genetics will synthesize and express the
resulting collection of sequences, and test them in vitro to identify the most active enzymes. The best
2 enzymes will be diversified using Primordial Genetics' proprietary Function Generator technology
and other randomized diversification methods. Populations of genes encoding enzyme variants will
be screened with ultra-high-throughput screens to identify the most active enzymes. The dataset
resulting from this work will be used to train Denovium's sequence prediction algorithm to accelerate
further enzyme improvements in Phase II.
The proposed work is a feasibility study for isolating and developing novel enzymes suitable for
enzymatic DNA synthesis, and also for creating a pipeline of enzyme optimization tools. The
enzymes discovered and in this work will be directly useful for enzymatic DNA synthesis applications,
and can be licensed or sold to leading DNA and gene manufaturers.
项目概要/摘要
DNA合成在生物技术革命中发挥了关键作用。随时可用
合成的 DNA 寡核苷酸以及由它们组装的基因对于
阐明和解锁生物功能并开启合成生物学新领域
可以创造新的细胞、酶、治疗剂、诊断剂和其他具有商业价值的试剂。
尽管存在这种影响,DNA 合成仍使用 30 多年前开发的化学策略,
其成本昂贵且仅限于长度为 200 个核苷酸或更短的分子。
正在探索使用模板的下一代酶促 DNA 合成技术
独立的 DNA 聚合酶 (TIDP),用于控制向生长中的 DNA 添加核苷酸
股。尽管最近报道了一些进展,但酶促 DNA 合成仍然受到以下因素的限制:
现有 TIDP 的效率低,特别是这些聚合酶的相对无能
掺入 3'-封闭的核苷酸。
在这个第一阶段小企业创新研究 (SBIR) 项目中,Primordial Genetics Inc
拥有差异化组合遗传技术的合成生物学公司和 Denovium Inc.,
一家人工智能公司开创了用于基因发现的新型人工智能方法,正在加入
迫使开发新型高效的 TIDP 用于体外酶促 DNA 合成。
Denovium 将利用其基于机器学习算法的计算能力
从专有和公共数据库中发现具有所需活动的新型 TIDP。德诺维姆
还将执行专有的人工智能 (AI) 扫描,以确定所有功能的影响
所选 TIDP 上可能发生的突变。原始遗传学将合成并表达
由此产生的序列集合,并在体外测试它们以识别最活跃的酶。最好的
2 种酶将利用 Primordial Genetics 专有的 Function Generator 技术实现多样化
和其他随机多样化方法。编码酶变体的基因群体将
通过超高通量筛选来筛选最活跃的酶。数据集
这项工作的成果将用于训练 Denovium 的序列预测算法以加速
第二阶段进一步改进酶。
拟议的工作是分离和开发适合的新型酶的可行性研究
酶促 DNA 合成,还用于创建一系列酶优化工具。这
在这项工作中发现的酶将直接用于酶促 DNA 合成应用,
并可授权或出售给领先的 DNA 和基因制造商。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Helge Zieler其他文献
Helge Zieler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Helge Zieler', 18)}}的其他基金
DNA 3.0: Developing novel enzymes for DNA synthesis with deep learning and combinatorial genetics
DNA 3.0:利用深度学习和组合遗传学开发用于 DNA 合成的新型酶
- 批准号:
10304760 - 财政年份:2021
- 资助金额:
$ 37.45万 - 项目类别:
DNA 3.0: Development of a novel, efficient and cost-effective enzymatic process for synthesis of DNA oligonucleotides
DNA 3.0:开发一种新颖、高效且具有成本效益的 DNA 寡核苷酸合成酶法
- 批准号:
10614066 - 财政年份:2020
- 资助金额:
$ 37.45万 - 项目类别:
Development of superior polymerases for next-generation mRNA therapeutic & vaccine manufacturing
开发用于下一代 mRNA 治疗的优质聚合酶
- 批准号:
10229603 - 财政年份:2018
- 资助金额:
$ 37.45万 - 项目类别:
Development of superior polymerases for next-generation mRNA therapeutic & vaccine manufacturing
开发用于下一代 mRNA 治疗的优质聚合酶
- 批准号:
10082063 - 财政年份:2018
- 资助金额:
$ 37.45万 - 项目类别:
相似国自然基金
蛋白质降解决定因子的生物信息学筛选及其耐药突变的多组学分析研究
- 批准号:32300528
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于生物信息学的类风湿性关节炎患者衰弱预测模型的构建与验证
- 批准号:82301786
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于结构表征的蛋白质与长链非编码RNA相互作用预测的生物信息学方法研究
- 批准号:62373216
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
突变和修饰重塑蛋白质亚细胞定位的生物信息学研究
- 批准号:32370698
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
自身免疫性疾病精准诊疗中基于非编码RNA组学和生物信息学的新方法研究
- 批准号:82371855
- 批准年份:2023
- 资助金额:74 万元
- 项目类别:面上项目
相似海外基金
Cloud-Based Machine Learning and Biomarker Visual Analytics for Salivary Proteomics
基于云的机器学习和唾液蛋白质组生物标志物可视化分析
- 批准号:
10827649 - 财政年份:2023
- 资助金额:
$ 37.45万 - 项目类别:
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
- 批准号:
10699828 - 财政年份:2023
- 资助金额:
$ 37.45万 - 项目类别:
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
- 批准号:
10745593 - 财政年份:2023
- 资助金额:
$ 37.45万 - 项目类别:
Mapping Integrated Single-Cell Chromatin Accessibility with the Single-Cell Transcriptional Landscape in Pediatric Type 2 Diabetes
绘制儿科 2 型糖尿病中单细胞染色质可及性与单细胞转录景观的整合图谱
- 批准号:
10664557 - 财政年份:2023
- 资助金额:
$ 37.45万 - 项目类别:
Optimization and Validation of a Cost-effective Image-Guided Automated Extracapsular Extension Detection Framework through Interpretable Machine Learning in Head and Neck Cancer
通过可解释的机器学习在头颈癌中优化和验证具有成本效益的图像引导自动囊外扩展检测框架
- 批准号:
10648372 - 财政年份:2023
- 资助金额:
$ 37.45万 - 项目类别: