Calcium coding mechanisms in plant cell growth and immunity

植物细胞生长和免疫中的钙编码机制

基本信息

  • 批准号:
    10026845
  • 负责人:
  • 金额:
    $ 34.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Calcium (Ca) is a second messenger in all eukaryotes. Defects in Ca signaling cause numerous human diseases including Alzheimer’s disease, heart failure, metabolic diseases, immune disorders, neurodegenerative diseases, and cancer. Despite the importance and broad medical implications, Ca signaling mechanisms remain unclear. The challenging question concerns how Ca encodes specific information coming from different primary signals and translate them into distinct cellular responses. Coding and decoding the specificity of Ca signals remains a long-standing puzzle in the signal transduction field. The PI’s laboratory studies Ca coding and decoding mechanisms using Arabidopsis as a model system and has made breakthroughs in dissecting Ca- coding mechanisms, setting the stage for this application. The proposed studies seek to understand Ca-coding mechanisms in the contexts of pollen tube growth and innate immunity both of which involve cyclic nucleotide- gated channels (CNGCs) in Arabidopsis. The Specific Aim 1 will address the relationship between CNGC-based Ca oscillations and peptide signaling during pollen tube growth. PI’s lab identified two CNGC-type proteins and calmodulin (CaM) forming a Ca “oscillator” in pollen tube growth that also requires autocrine peptide hormones produced by pollen tube. The overarching hypothesis is that peptides bind to their receptors that in turn modulate Ca-oscillator channels. This will be tested through genetic analysis combined with single cell Ca imaging. The Specific Aim 2 will identify Ca transporters that work together with CNGCs in immunity signaling. The importance of Ca signaling has long been recognized in innate immunity for both animal and plant cells. PI’s lab identified a CNGC-type channel that generates cytoplasmic Ca spike in response to bacterial pathogens. Using genetic analysis in Arabidopsis and yeast genetic complementation models, Aim 2 will identify the transporters responsible for removing the Ca signal and study how they coordinate with CNGC-type channels to precisely shape the spatial and temporal dynamics of Ca codes. Specific Aim 3 seeks to understand the mechanisms for activation and inactivation of plant CNGCs. The CNGC-type channels function in both pollen tube and immunity models, but they consist of different subunits and their regulations by CaM are different too. Further, while animal CNGCs are activated by the cyclic nucleotides (cAMP/cGMP), the plant CNGCs in pollen tube and immunity models are insensitive to these nucleotides. The hypothesis is that plant CNGCs are regulated differently from animal counterparts and CaM-based regulation depends on subunit composition of the CNGCs. This hypothesis will be tested in Aim 3 using biochemical and electrophysiological approaches in both pollen tube and immunity model. Arabidopsis is an ideal model to address basic Ca signaling mechanisms, as it provides a plethora of genetic tools and an array of whole-organism and single-cell Ca signaling phenotypes in the genetic mutants. Completion of these aims will reveal new Ca coding mechanisms, contributing to the conceptual framework of Ca signaling highly relevant to human health.
钙(CA)是所有真核生物中的第二个信使。 CA信号中的缺陷导致许多人类疾病 包括阿尔茨海默氏病,心力衰竭,代谢疾病,免疫疾病,神经退行性疾病 疾病和癌症。尽管重要性和广泛的医学意义,但CA信号传导机制仍然存在 不清楚。挑战问题涉及CA如何编码来自不同主要的特定信息 信号并将其转换为不同的细胞反应。编码和解码CA信号的特异性 在信号传输场中仍然是一个长期的难题。 PI的实验室研究CA编码和 使用拟南芥作为模型系统的解码机制,并在解剖CA-方面取得了突破 编码机制,为该应用程序奠定了基础。拟议的研究试图了解CA编码 在花粉管生长和先天免疫组织派的背景下的机制,这两种机制都涉及环状核苷酸 - 拟南芥的门控通道(CNGC)。具体目标1将解决基于CNGC的关系 花粉管生长过程中的Ca振荡和肽信号传导。 PI的实验室确定了两种CNGC型蛋白质和 在花粉管生长中形成CA“振荡器”的钙调蛋白(CAM)也需要自分泌肽激素 由花粉管产生。总体假设是肽与其接收器结合,然后调节 CA振荡器通道。这将通过遗传分析与单细胞CA成像结合进行测试。这 特定的目标2将识别与免疫信号中CNGC一起工作的CA转运蛋白。重要性 长期以来,CA信号在动物和植物细胞的先天免疫力中已被识别。 PI的实验室确定了 CNGC型通道会对细菌病原体产生细胞质CA尖峰。使用通用 在拟南芥和酵母遗传完成模型中,AIM 2将识别转运蛋白 负责删除CA信号并研究它们如何与CNGC型通道协调至精确 塑造CA代码的空间和临时动力学。特定目标3试图了解 植物CNGC的激活和失活。 CNGC型通道在花粉管和免疫力中的功能 模型,但它们由不同的亚基组成,凸轮的法规也不同。此外,动物 CNGC被环状核苷酸(CAMP/CGMP),花粉管中的植物CNGC和免疫激活 模型对这些核苷酸不敏感。假设是,植物CNGC的调节与 动物对应物和基于CAM的调节取决于CNGC的亚基组成。这个假设 将使用花粉管和免疫的生化和电生理方法在AIM 3中进行测试 模型。拟南芥是解决基本CA信号传导机制的理想模型,因为它提供了很多 基因突变体中的遗传工具以及一系列的全生物和单细胞CA信号表型。 这些目标的完成将揭示新的CA编码机制,从而有助于 CA信号与人类健康高度相关。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sheng Luan其他文献

Sheng Luan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sheng Luan', 18)}}的其他基金

Calcium coding mechanisms in plant cell growth and immunity
植物细胞生长和免疫中的钙编码机制
  • 批准号:
    10430218
  • 财政年份:
    2020
  • 资助金额:
    $ 34.21万
  • 项目类别:
Calcium coding mechanisms in plant cell growth and immunity
植物细胞生长和免疫中的钙编码机制
  • 批准号:
    10643897
  • 财政年份:
    2020
  • 资助金额:
    $ 34.21万
  • 项目类别:
Calcium coding mechanisms in plant cell growth and immunity
植物细胞生长和免疫中的钙编码机制
  • 批准号:
    10581257
  • 财政年份:
    2020
  • 资助金额:
    $ 34.21万
  • 项目类别:
Calcium coding mechanisms in plant cell growth and immunity
植物细胞生长和免疫中的钙编码机制
  • 批准号:
    10385315
  • 财政年份:
    2020
  • 资助金额:
    $ 34.21万
  • 项目类别:
Calcium coding mechanisms in plant cell growth and immunity
植物细胞生长和免疫中的钙编码机制
  • 批准号:
    10242190
  • 财政年份:
    2020
  • 资助金额:
    $ 34.21万
  • 项目类别:
2019 Organellar Channels and Transporters Gordon Research Conference and Gordon Research Seminar
2019细胞器通道与转运蛋白戈登研究会议暨戈登研究研讨会
  • 批准号:
    9760256
  • 财政年份:
    2019
  • 资助金额:
    $ 34.21万
  • 项目类别:

相似国自然基金

海洋缺氧对持久性有机污染物入海后降解行为的影响
  • 批准号:
    42377396
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
  • 批准号:
    32371616
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
  • 批准号:
    22379027
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
  • 批准号:
    32300624
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
  • 批准号:
    52377215
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
  • 批准号:
    10676358
  • 财政年份:
    2024
  • 资助金额:
    $ 34.21万
  • 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
  • 批准号:
    10749539
  • 财政年份:
    2024
  • 资助金额:
    $ 34.21万
  • 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 34.21万
  • 项目类别:
Focused ultrasound for memory disorders
聚焦超声治疗记忆障碍
  • 批准号:
    10638189
  • 财政年份:
    2023
  • 资助金额:
    $ 34.21万
  • 项目类别:
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
  • 批准号:
    10678341
  • 财政年份:
    2023
  • 资助金额:
    $ 34.21万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了