Advancing predictive physical modeling through focused development of model systems to drive new modeling innovations
通过集中开发模型系统来推进预测物理建模,以推动新的建模创新
基本信息
- 批准号:10000168
- 负责人:
- 金额:$ 34.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-10 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAffectAffinityAreaAutomobile DrivingBackBindingBinding ProteinsBiologicalBiological ModelsCell Membrane PermeabilityChemicalsCollaborationsCommunitiesComputational BiologyComputational TechniqueComputing MethodologiesDataData SetDevelopmentDiseaseDockingDrug DesignDrug IndustryDrug TargetingEnsureEvaluationFailureFosteringFree EnergyFundingGenerationsHeadHealthHumanIndividualInformaticsLearningLigandsMeasurementMeasuresMethodologyMethodsModelingModificationMolecularPerformancePharmaceutical PreparationsPharmacologic SubstancePhasePlayProteinsPublicationsResearchRoboticsRunningSamplingScienceSeriesSerum AlbuminSolubilitySolventsStress TestsSystemTechniquesTechnologyTestingTimeTreatment FactorUnited States National Institutes of HealthWorkaqueousbaseblindcatalystcavitandcrowdsourcingdata resourcedesigndrug developmentdrug discoveryexperimental studyfootimprovedinnovationinsightlead optimizationmodel developmentmolecular recognitionnew technologynovelpersonalized medicinephysical modelphysical propertypredictive toolsprotonationreceptorsmall moleculesmall molecule therapeuticssuccesstargeted treatmenttautomervirtual screening
项目摘要
PROJECT SUMMARY / ABSTRACT
This work seeks to advance quantitative methods for biomolecular design, especially for predicting biomolecular
interactions, via a focused series of community blind prediction challenges. Physical methods for predicting binding
free energies, or “free energy methods”, are poised to dramatically reshape early stage drug discovery, and
are already finding applications in pharmaceutical lead optimization. However, performance is unreliable, the
domain of applicability is limited, and failures in pharmaceutical applications are often hard to understand and
fix. On the other hand, these methods can now typically predict a variety of simple physical properties such as
solvation free energies or relative solubilities, though there is still clear room for improvement in accuracy. In
recent years, competitions and crowdsourcing have proven an effective model for driving innovations in diverse
fields. In our field, blind prediction challenges have played a key role in driving innovations in prediction of physical
properties and binding, especially in the form of the SAMPL series of challenges. Here, we will continue and
extend SAMPL prediction challenges to include new physical properties, more complicated host-guest binding
data, and application to biomolecular systems. Carefully selected systems and novel experimental data will provide
challenges of gradually increasing complexity spanning between systems which are now tractable to those which
are marginally out of reach of today's methods but still slightly simpler than those covered by the Drug Design
Data Resource (D3R) series of challenges on existing pharmaceutical data. We will work with D3R to run blind
challenges on the data we generate and to ensure it is designed to maximally benefit the field.
In Aim 1, we will collect new measurements on partitioning, distribution, and protonation of drug-like compounds,
in collaboration with partners in the pharmaceutical industry. In Aim 2, we leverage our expertise in host-guest
binding to generate new data on host-guest binding in cucubiturils and deep cavity cavitands. And in Aim 3, we
use high-throughput robotic experiments to generate new protein-ligand binding data of biological relevance. Aim
4 focuses on using this data in the SAMPL series of challenges, applying proven crowdsourcing-based techniques
to drive the development of new methods and new understanding of the strengths and weaknesses of existing
techniques. We will also run reference calculations with the latest techniques.
This work will ensure the continued success of SAMPL challenges which have already driven considerable
innovation in the field and been the focus of 100 different publications (each typically cited 5-50 times) since
their inception around 2007, and will play a key role in driving the next several generations of improvements in
computational techniques for molecular design. The research proposed here will lead to significant improvements
in the predictive power of physical models for drug discovery, molecular design and the prediction of physical
properties.
项目摘要 /摘要
这项工作旨在推进生物分子设计的定量方法,特别是用于预测生物分子
互动,通过一系列集中的社区盲目预测挑战。预测绑定的物理方法
自由能或“自由能法”被中毒以重塑早期药物发现,并且
已经在药物铅优化中找到了应用。但是,性能是不可靠的
适用性领域是有限的,药品应用中的失败通常很难理解和
x。另一方面,这些方法现在通常可以预测各种简单的物理特性,例如
解决方案自由能或相对溶解度,尽管仍然有明确的准确性空间。在
近年来,竞争和众包被证明是推动潜水员创新的有效模型
领域。在我们的领域,盲目的预测挑战在推动物理预测的创新方面发挥了关键作用
属性和结合,尤其是在Sampl系列挑战的形式中。在这里,我们将继续
扩展样本预测挑战,包括新的物理特性,更复杂的宿主 - 环绑定
数据和应用于生物分子系统。精心选择的系统和新颖的实验数据将提供
系统之间逐渐增加复杂性的挑战,这些系统现在可以解决这些问题
今天的方法遥不可及,但仍然比药物设计所涵盖的方法略简单
数据资源(D3R)对现有药物数据的挑战系列。我们将与D3R合作以盲目
我们生成的数据面临的挑战,并确保其设计为最大的利益。
在AIM 1中,我们将收集有关类似药物的化合物的分配,分布和质子化的新测量结果,
与制药行业合作伙伴合作。在AIM 2中,我们利用我们的专业知识
结合以生成有关库孔贝氏和深腔腔中宿主 - 圈结合的新数据。在AIM 3中,我们
使用高通量机器人实验生成生物学相关性的新蛋白质结合数据。目的
4专注于在一系列挑战中使用这些数据,应用基于众包的技术技术
推动新方法的发展以及对现有的优势和劣势的新理解
技术。我们还将使用最新技术运行参考计算。
这项工作将确保Sampl挑战的持续成功,这些挑战已经驱动了很大
在该领域的创新,是100个不同出版物的重点(通常引用了5-50次),因为
他们的成立于2007年,将在推动接下来的几代改进方面发挥关键作用
分子设计的计算技术。这里提出的研究将导致重大改进
在药物发现,分子设计和物理预测的物理模型的预测能力中
特性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Lowell Mobley其他文献
David Lowell Mobley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Lowell Mobley', 18)}}的其他基金
Accelerating drug discovery via ML-guided iterative design and optimization
通过机器学习引导的迭代设计和优化加速药物发现
- 批准号:
10552325 - 财政年份:2023
- 资助金额:
$ 34.91万 - 项目类别:
Advancing predictive physical modeling through focused development of model systems to drive new modeling innovations
通过集中开发模型系统来推进预测物理建模,以推动新的建模创新
- 批准号:
9932112 - 财政年份:2018
- 资助金额:
$ 34.91万 - 项目类别:
Advancing predictive physical modeling through focused development of model systems to drive new modeling innovations
通过集中开发模型系统来推进预测物理建模,以推动新的建模创新
- 批准号:
10165354 - 财政年份:2018
- 资助金额:
$ 34.91万 - 项目类别:
Advancing predictive physical modeling through focused development of model systems to drive new modeling innovations
通过集中开发模型系统来推进预测物理建模,以推动新的建模创新
- 批准号:
10245037 - 财政年份:2018
- 资助金额:
$ 34.91万 - 项目类别:
Computational alchemy for molecular design and optimization
分子设计和优化的计算炼金术
- 批准号:
10472624 - 财政年份:2014
- 资助金额:
$ 34.91万 - 项目类别:
Alchemical free energy methods for efficient drug lead optimization
用于高效先导药物优化的炼金自由能方法
- 批准号:
8613366 - 财政年份:2014
- 资助金额:
$ 34.91万 - 项目类别:
Alchemical free energy methods for efficient drug lead optimization
用于高效先导药物优化的炼金自由能方法
- 批准号:
9017053 - 财政年份:2014
- 资助金额:
$ 34.91万 - 项目类别:
Alchemical free energy methods for efficient drug lead optimization
用于高效先导药物优化的炼金自由能方法
- 批准号:
8918691 - 财政年份:2014
- 资助金额:
$ 34.91万 - 项目类别:
Computational alchemy for molecular design and optimization
分子设计和优化的计算炼金术
- 批准号:
9885888 - 财政年份:2014
- 资助金额:
$ 34.91万 - 项目类别:
Computational alchemy for molecular design and optimization
分子设计和优化的计算炼金术
- 批准号:
10261348 - 财政年份:2014
- 资助金额:
$ 34.91万 - 项目类别:
相似国自然基金
线上民宿房东亲和力对房客预定行为的影响机制研究——基于多源异构数据视角
- 批准号:72202154
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
线上民宿房东亲和力对房客预定行为的影响机制研究——基于多源异构数据视角
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
估计和解释序列变体对蛋白质稳定性、结合亲和力以及功能的影响
- 批准号:31701136
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
RGS19对嗜酸细胞性食管炎FcεRI信号传导通路的影响及其作用机制的研究
- 批准号:81500502
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
人B组腺病毒纤毛蛋白与DSG2受体亲和力的差异及其对病毒致病力的影响研究
- 批准号:31570163
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 34.91万 - 项目类别:
An immunotherapeutic IgY formulation against norovirus diarrhea
一种针对诺如病毒腹泻的免疫治疗 IgY 制剂
- 批准号:
10693530 - 财政年份:2023
- 资助金额:
$ 34.91万 - 项目类别:
Mechanisms and manipulation of force dependent behavior in T cell biology
T 细胞生物学中力依赖性行为的机制和操纵
- 批准号:
10681766 - 财政年份:2023
- 资助金额:
$ 34.91万 - 项目类别:
Elucidation and improved control of human induced pluripotent stem cell cardiac differentiation by using single-guide RNA-based cellular barcoding to track and manipulate lineages
通过使用基于单向导 RNA 的细胞条形码来跟踪和操纵谱系,阐明并改进对人类诱导多能干细胞心脏分化的控制
- 批准号:
10752369 - 财政年份:2023
- 资助金额:
$ 34.91万 - 项目类别:
Pathogenic mechanisms of myosin binding protein C missense variants within hypertrophic cardiomyopathy
肥厚型心肌病中肌球蛋白结合蛋白C错义变异的致病机制
- 批准号:
10610423 - 财政年份:2022
- 资助金额:
$ 34.91万 - 项目类别: