Advancing predictive physical modeling through focused development of model systems to drive new modeling innovations
通过集中开发模型系统来推进预测物理建模,以推动新的建模创新
基本信息
- 批准号:10165354
- 负责人:
- 金额:$ 23.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-10 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdministrative SupplementAdoptionAffinityAreaAutomationAutomobile DrivingBindingBiological ModelsBlindedChemistryCloud ComputingCommunitiesComputer softwareDataDepositionDevelopmentDiseaseDockingDrug DesignDrug IndustryEnsureFailureFree EnergyFundingHumanInfrastructureInstitutesKnowledgeLigandsLinkMethodologyMethodsModelingMolecularParticipantPartition CoefficientPerformancePharmacologic SubstancePlayProcessPropertyPublicationsRegistriesReproducibilityResearch PersonnelRunningScienceSeriesSoftware ToolsSolubilityStress TestsStructural ModelsSystemTechniquesTechnologyTestingTimeUnited States National Institutes of HealthUniversitiesWorkarmbaseblindcareercollegecomputational chemistrycomputing resourcescostcrowdsourcingdata resourcedesigndrug developmentdrug discoveryexperimental studyfallsinnovationinsightinteroperabilitylead optimizationmodel developmentnovelpersonalized medicinephysical modelphysical propertypredictive modelingreceptor bindingrepositorysmall molecule therapeuticssoftware infrastructuretargeted treatmenttool
项目摘要
PROJECT SUMMARY/ABSTRACT
This work seeks to advance quantitative methods for biomolecular design, especially for predicting
biomolecular interactions, via a focused series of community blind prediction challenges. Physical methods for
predicting binding free energies, or “free energy methods”, are poised to dramatically reshape early stage drug
discovery, and are already finding applications in pharmaceutical lead optimization. However, performance is
unreliable, the domain of applicability is limited, and failures in pharmaceutical applications are often hard to
understand and fix. On the other hand, these methods can now typically predict a variety of simple physical
properties such as solvation free energies or relative solubilities, though there is still clear room for
improvement in accuracy. In recent years, competitions and crowdsourcing have proven an effective model for
driving innovations in diverse fields. In our field, blind prediction challenges have played a key role in driving
innovations in prediction of physical properties and binding, especially in the form of the SAMPL series of
challenges. Here, we will continue and extend SAMPL prediction challenges to include new physical
properties, more complicated host-guest binding data, and application to biomolecular systems.
Carefully selected systems and novel experimental data will provide challenges of gradually increasing
complexity spanning between systems which are now tractable to those which are marginally out of reach of
today's methods but still slightly simpler than those covered by the Drug Design Data Resource (D3R) series of
challenges on existing pharmaceutical data. We will work with D3R to run blind challenges on the data we
generate and to ensure it is designed to maximally benefit the field.
In our original proposal, Aim 4 focused on using data generated in a SAMPL series of challenges, applying
proven crowdsourcing-based techniques to drive the development of new methods and new understanding of
the strengths and weaknesses of existing techniques. Here, we extend this work by building out software
infrastructure for a fully automated component of these challenges, where workflow components can be
deposited in a common registry and then linked together to automate participation in SAMPL challenges. This
solves several key problems at once, and will allow innovations resulting from the SAMPL challenges to have
much greater impact on the community and much more rapidly disseminate to a wide variety of applications.
Users of software employed in the SAMPL challenges number in the thousands to tens of thousands, so this
will have far-reaching implications for the predictive modeling community.
项目摘要/摘要
这项工作旨在推进生物分子设计的定量方法,尤其是用于预测
生物分子相互作用,通过一系列集中的社区盲目预测挑战。物理方法
预测结合的自由能或“自由能方法”被毒死以急剧重塑早期药物
发现,并且已经在药品铅优化中找到了应用。但是,性能是
不可靠的,适用性的领域是有限的,并且药物应用中的失败通常很难
理解和修复。另一方面,这些方法现在通常可以预测各种简单的物理
诸如解决自由能或相对溶解度之类的属性,尽管仍然有明确的空间
准确性的提高。近年来,竞争和众包已被证明是一个有效的模型
推动潜水场领域的创新。在我们的领域,盲目预测挑战在驾驶中发挥了关键作用
预测物理特性和结合的创新,尤其是以样本系列的形式
挑战。在这里,我们将继续并扩展样本预测挑战,以包括新的物理
属性,更复杂的宿主 - 环境结合数据以及应用于生物分子系统。
精心选择的系统和新型实验数据将为逐渐增加的挑战
现在跨越系统之间的复杂性,这些系统现在可以限制地触及的系统。
当今的方法,但仍然比药物设计数据资源(D3R)系列涵盖的方法略简单
现有药物数据的挑战。我们将与D3R合作,在我们的数据上实现盲目挑战
生成并确保其旨在最大化该领域的利益。
在我们最初的提案中,AIM 4专注于使用一系列挑战中生成的数据,应用
可靠的基于众包的技术来推动新方法的开发和新的理解
现有技术的优点和缺点。在这里,我们通过构建软件来扩展这项工作
这些挑战的完全自动化组件的基础架构可以是工作流程组件
存放在共同注册表中,然后将其链接在一起,以自动参与Sampl挑战。这
立即解决几个关键问题,并将允许由Sampl挑战产生的创新
对社区的影响更大,并且更快地传播到各种应用程序。
Sampl中使用的软件用户挑战数字数量达到数万,因此
将对预测建模社区具有深远的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Lowell Mobley其他文献
David Lowell Mobley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Lowell Mobley', 18)}}的其他基金
Accelerating drug discovery via ML-guided iterative design and optimization
通过机器学习引导的迭代设计和优化加速药物发现
- 批准号:
10552325 - 财政年份:2023
- 资助金额:
$ 23.55万 - 项目类别:
Advancing predictive physical modeling through focused development of model systems to drive new modeling innovations
通过集中开发模型系统来推进预测物理建模,以推动新的建模创新
- 批准号:
9932112 - 财政年份:2018
- 资助金额:
$ 23.55万 - 项目类别:
Advancing predictive physical modeling through focused development of model systems to drive new modeling innovations
通过集中开发模型系统来推进预测物理建模,以推动新的建模创新
- 批准号:
10000168 - 财政年份:2018
- 资助金额:
$ 23.55万 - 项目类别:
Advancing predictive physical modeling through focused development of model systems to drive new modeling innovations
通过集中开发模型系统来推进预测物理建模,以推动新的建模创新
- 批准号:
10245037 - 财政年份:2018
- 资助金额:
$ 23.55万 - 项目类别:
Computational alchemy for molecular design and optimization
分子设计和优化的计算炼金术
- 批准号:
10472624 - 财政年份:2014
- 资助金额:
$ 23.55万 - 项目类别:
Alchemical free energy methods for efficient drug lead optimization
用于高效先导药物优化的炼金自由能方法
- 批准号:
8613366 - 财政年份:2014
- 资助金额:
$ 23.55万 - 项目类别:
Alchemical free energy methods for efficient drug lead optimization
用于高效先导药物优化的炼金自由能方法
- 批准号:
9017053 - 财政年份:2014
- 资助金额:
$ 23.55万 - 项目类别:
Alchemical free energy methods for efficient drug lead optimization
用于高效先导药物优化的炼金自由能方法
- 批准号:
8918691 - 财政年份:2014
- 资助金额:
$ 23.55万 - 项目类别:
Computational alchemy for molecular design and optimization
分子设计和优化的计算炼金术
- 批准号:
9885888 - 财政年份:2014
- 资助金额:
$ 23.55万 - 项目类别:
Computational alchemy for molecular design and optimization
分子设计和优化的计算炼金术
- 批准号:
10261348 - 财政年份:2014
- 资助金额:
$ 23.55万 - 项目类别:
相似海外基金
The University of Miami AIDS Research Center on Mental Health and HIV/AIDS - Center for HIV & Research in Mental Health (CHARM)Research Core - EIS
迈阿密大学艾滋病心理健康和艾滋病毒/艾滋病研究中心 - Center for HIV
- 批准号:
10686546 - 财政年份:2023
- 资助金额:
$ 23.55万 - 项目类别:
I-TRANSFER Improving TRansitions ANd outcomeS oF sEpsis suRvivors
I-TRANSFER 改善脓毒症幸存者的转变和结果
- 批准号:
10824878 - 财政年份:2023
- 资助金额:
$ 23.55万 - 项目类别:
Administrative Supplement for Peer-Delivered and Technology-Assisted Integrated Illness Management and Recovery
同行交付和技术辅助的综合疾病管理和康复的行政补充
- 批准号:
10811292 - 财政年份:2023
- 资助金额:
$ 23.55万 - 项目类别:
Evaluation and optimization of NWB neurophysiology software and data in the cloud
NWB 神经生理学软件和云数据的评估和优化
- 批准号:
10827688 - 财政年份:2023
- 资助金额:
$ 23.55万 - 项目类别:
Developing a pragmatic guide to implementing social risk referrals: A partnership between Caring Health Center (CHC) and the Implementation Science Center for Cancer
制定实施社会风险转诊的实用指南:关爱健康中心 (CHC) 与癌症实施科学中心之间的合作伙伴关系
- 批准号:
10822141 - 财政年份:2023
- 资助金额:
$ 23.55万 - 项目类别: