Evaluation and optimization of NWB neurophysiology software and data in the cloud
NWB 神经生理学软件和云数据的评估和优化
基本信息
- 批准号:10827688
- 负责人:
- 金额:$ 22.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdministrative SupplementAdoptedAdoptionArchivesBRAIN initiativeCloud ComputingCodeCommunicationCommunitiesComputer SystemsComputer softwareConsultationsDataData AnalysesData EngineeringData SetDevelopmentEducationElectrophysiology (science)ElementsEnsureEnvironmentEvaluationExpedite DisseminationFunding OpportunitiesGoalsGrantInfrastructureLaboratoriesLibrariesMethodsNeurosciencesOutputParentsPerformanceProcessPublicationsPublishingPythonsReadinessReadingRegistriesReproducibilityResearchResearch PersonnelResourcesRunningSourceStandardizationSystemTechnologyTestingVisualizationWorkWritingbasecloud basedcloud storagecomputerized data processingcostcost effectivedata accessdata exchangedata formatdata managementdata sharingdata standardsdata toolsdesignextracellularhackathonimprovedinnovative technologiesneurophysiologynew technologyparallel processingparallelizationparent grantparent projectrapid growthresponsesoftware developmenttoolusabilityweb services
项目摘要
PROJECT SUMMARY - Evaluation and optimization of NWB software and data in the cloud.
This proposal is for an administrative supplement for the U24 grant “Advancing standardization of
neurophysiology data through dissemination of NWB.” The parent project centers around providing support for
the usage of Neurodata Without Borders (NWB), a data standard for neurophysiology data that allows
neuroscience researchers to package and publish their data in a form that is readily available and reusable by
others. Through the parent project, the team is taking several approaches to engage with the user community
and lower the barriers to entry for adopting NWB, including hosted hackathons, one-on-one consultations, and
tutorials. The team also ensures the continued quality of the NWB codebase through bug tracking, test
coverage, and continued engagement with scientific software developers to assist with the integration of new
tools for analysis, visualization, search, and publication of NWB datasets.
Through our engagements with the community, we have identified the need to optimize NWB software and
data for usage in the cloud as a key obstacle to adoption of NWB that we anticipate will become significant in
the coming years. As neurophysiology data volumes continue to grow at a rapid pace, researchers are
increasingly seeking to leverage the parallel processing capabilities of cloud infrastructure for converting data
to NWB and analysis of NWB data. However, the current NWB conversion tools are not yet equipped for cloud
integration and the NWB data layout is not optimized for cloud-based reading and analysis. To address these
gaps, we will focus on two key aims. First, we will evaluate and optimize strategies for using cloud resources to
enable researchers to perform efficient, cost-effective cloud-based conversion of data to NWB. Specifically, we
will package our NeuroConv conversion software into containers that contain all of the necessary elements for
NeuroConv to be run on any cloud computing environment, and we will develop tools for integrating existing
cloud resources, e.g., for input and output of conversion data from/to cloud storage. Second, we will evaluate
and optimize reading of NWB data from cloud storage to enhance cloud-based analysis. Specifically, we will
integrate the Kerchunk software package designed to read data efficiently from the cloud with the PyNWB
software for reading NWB data and we will evaluate the performance of different data layout strategies and
optimize the storage of NWB data to enhance the efficiency for cloud-based access and analysis.
Successful completion of the proposed work will create the necessary infrastructure and guidance for
neuroscience researchers to take full advantage of cloud computing for conversion of data to NWB and
analysis of data in NWB. This will enable researchers to convert and analyze their neurophysiology data faster
and with fewer resources, which promises to improve data sharing and expedite scientific discovery.
项目摘要 - 云中NWB软件和数据的评估和优化。
该提案是为U24赠款的行政补充
神经生理学数据是通过传播NWB的。
无边界的神经逻辑(NWB)的使用,NWB是神经生理学数据的数据标准
神经科学的研究人员以容易获得并可以重复使用的形式包装和发布其数据
其他的。通过父项目,团队正在采取几种方法与用户社区互动
并降低采用NWB的进入障碍,包括托管黑客马拉松,一对一的咨询和
教程。该团队还通过错误跟踪确保NWB代码库的持续质量
覆盖范围,并继续与科学软件开发人员互动,以协助整合新的
用于分析,可视化,搜索和发布NWB数据集的工具。
通过与社区的交往,我们确定了优化NWB软件和
在云中使用的数据是我们预期采用NWB的关键障碍
未来几年。随着神经生理学的数据量继续以快速的速度增长,研究人员就是
越来越多地寻求利用云基础架构的并行处理能力来转换数据
进行NWB和NWB数据的分析。但是,当前的NWB转换工具尚未配备云
集成和NWB数据布局未针对基于云的阅读和分析进行优化。解决这些
空白,我们将重点关注两个关键目标。首先,我们将评估并优化使用云资源的策略
使研究人员能够对数据进行有效的,具有成本效益的基于云的转换为NWB。具体来说,我们
将我们的NeuroConv转换软件包装到包含所有必要元素的容器中
NeuroConv将在任何云计算环境上运行,我们将开发用于集成现有的工具
云资源,例如,用于从/到云存储的转换数据的输入和输出。第二,我们将评估
并优化从云存储中读取NWB数据以增强基于云的分析。具体来说,我们会的
集成了Kerchunk软件包,旨在用Pynwb从云中有效地读取数据
用于读取NWB数据的软件,我们将评估不同数据布局策略的性能和
优化NWB数据的存储,以提高基于云的访问和分析的效率。
成功完成拟议的工作将创建必要的基础设施和指导
神经科学研究人员将充分利用云计算,以将数据转换为NWB和
NWB中的数据分析。这将使研究人员能够更快地转换和分析其神经生理学数据
并且资源较少,这有望改善数据共享并加快科学发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin K Dichter其他文献
Benjamin K Dichter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin K Dichter', 18)}}的其他基金
Advancing Standardization of Neurophysiology Data Through Dissemination of NWB
通过 NWB 的传播推进神经生理学数据的标准化
- 批准号:
10573260 - 财政年份:2021
- 资助金额:
$ 22.87万 - 项目类别:
Advancing Standardization of Neurophysiology Data Through Dissemination of NWB
通过 NWB 的传播推进神经生理学数据的标准化
- 批准号:
10374121 - 财政年份:2021
- 资助金额:
$ 22.87万 - 项目类别:
Advancing Standardization of Neurophysiology Data Through Dissemination of NWB
通过 NWB 的传播推进神经生理学数据的标准化
- 批准号:
10116139 - 财政年份:2021
- 资助金额:
$ 22.87万 - 项目类别:
相似海外基金
The University of Miami AIDS Research Center on Mental Health and HIV/AIDS - Center for HIV & Research in Mental Health (CHARM)Research Core - EIS
迈阿密大学艾滋病心理健康和艾滋病毒/艾滋病研究中心 - Center for HIV
- 批准号:
10686546 - 财政年份:2023
- 资助金额:
$ 22.87万 - 项目类别:
Developing a pragmatic guide to implementing social risk referrals: A partnership between Caring Health Center (CHC) and the Implementation Science Center for Cancer
制定实施社会风险转诊的实用指南:关爱健康中心 (CHC) 与癌症实施科学中心之间的合作伙伴关系
- 批准号:
10822141 - 财政年份:2023
- 资助金额:
$ 22.87万 - 项目类别:
Exercise-induced Legacy Health Benefits on Cardiometabolic Risk Factors in Aging Adults with Prediabetes
运动对患有前驱糖尿病的老年人的心脏代谢危险因素的传统健康益处
- 批准号:
10656111 - 财政年份:2022
- 资助金额:
$ 22.87万 - 项目类别:
Containerizing tasks to ensure robust AI/ML data curation pipelines to estimate environmental disparities in the rural south
将任务容器化,以确保强大的 AI/ML 数据管理管道,以估计南部农村的环境差异
- 批准号:
10842665 - 财政年份:2022
- 资助金额:
$ 22.87万 - 项目类别: