Integrated analysis of coronary anatomy and biology with 18F-fluoride PET and CT angiography

利用 18F-氟化物 PET 和 CT 血管造影对冠状动脉解剖学和生物学进行综合分析

基本信息

  • 批准号:
    10015326
  • 负责人:
  • 金额:
    $ 66.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Integrated analysis of coronary anatomy and biology using 18F-fluoride PET and CT angiography Each year, 735,000 Americans have an acute myocardial infarction (heart attack), and approximately 120,000 die from it. Heart attacks occur most commonly due to rupture of atherosclerotic plaques in coronary arteries. Despite this, current diagnostic and treatment algorithms make no allowance for the assessment of disease activity and currently all patients with atherosclerosis are treated in a similar manner. This failure to differentiate stable from active disease may result in potentially unnecessary or insufficient therapies. In a breakthrough series of studies, our co-investigators discovered that positron emission tomography (PET) with 18F-sodium- fluoride (18F-NaF; an inexpensive and widely available tracer approved by Food and Drug Administration) can readily identify plaque rupture and increased coronary plaque activity. We propose to build further on this success, by addressing several important remaining limitations that prevent us from translating this technology to broad clinical use. The limitations include complicated and subjective image analysis, underutilization of the concomitant coronary computed tomography angiography (CTA) for plaque characterization, inability to utilize prior CTA for the analysis of 18F-NaF PET, lack of methods to integrate all available PET and CTA data and significant motion of the coronaries during the PET scan. We propose a multi-faceted approach to automate and improve coronary 18F-NaF PET imaging by full integration with CTA and correction for cardiac, respiratory, and patient motion. The overall goal of the proposal is to optimize the measurement of disease activity in coronary atherosclerosis using integrated 18F-NaF PET/CTA imaging, with the opportunity to validate this development against clinical outcome in a “real-world” multicenter patient study. For this work, we propose the following 3 specific aims: 1) to integrate quantification of CTA and PET image data 2) to develop new methods for simultaneous correction of cardiac, respiratory, and patient motion for coronary PET, and 3) to clinically evaluate new methods in a multicenter clinical trial (separately funded and already underway), further refining risk prediction for heart attacks with integrated PET+CTA risk score derived by machine learning. This work will lead to a robust and reproducible clinical method for stratification of patients for risk of heart attacks, with potential to be applied for the identification of patients who would most benefit from expensive, and potentially risky treatments. Our techniques could also be used in future clinical trials to test the efficacy of novel therapies. Moreover, the new analysis will be applicable to other PET tracers that may be developed to investigate other pathological processes in the coronary vasculature. The resulting software will be shared with clinical institutions performing coronary PET to facilitate standardization and automation of this novel plaque imaging technique.
项目摘要 使用18F氟化物和CT血管造影的冠状动脉解剖学和生物学分析 每年,有735,000名美国人患有急性心肌梗塞(心脏病发作),约有120,000 死于它。心脏病发作最常见的是冠状动脉动脉中动脉粥样硬化斑块破裂。 尽管如此,当前的诊断和治疗算法没有评估疾病的津贴 目前,所有动脉粥样硬化患者的活动都以类似的方式治疗。这种不区分的 活性疾病稳定可能导致潜在的不必要或不足的疗法。突破 一系列研究,我们的共同研究者发现,正电子发射断层扫描(PET)具有18F-钠的 氟化物(18F-NAF;由食品和药物管理批准的廉价且广泛可用的示踪剂)可以 很容易识别斑块破裂并增加冠状动脉斑块活性。我们建议进一步发展 成功,通过解决剩余的几个剩余限制,以阻止我们翻译这项技术 广泛的临床用途。局限性包括复杂和主观的图像分析,未充分利用 与斑块表征相关的冠状动脉计算机断层扫描血管造影(CTA),无法利用 先前用于分析18F-NAF PET的CTA,缺乏整合所有可用PET和CTA数据的方法 在PET扫描期间,冠状动脉的重大运动。 我们提出了一种多面方法来通过完全集成来自动化和改善冠状动脉18F-NAF PET成像 带有CTA和心脏,呼吸和患者运动的校正。该提议的总体目标是 使用综合的18F-NAF PET/CTA优化冠状动脉粥样硬化中疾病活性的测量 成像,有机会在“现实世界”多中心验证这种发展,以防止临床结果 患者研究。对于这项工作,我们提出以下3个具体目的:1)整合CTA的数量和 PET图像数据2)开发新方法,以简单校正心脏,呼吸系统和患者 冠状动脉宠物的运动,3)在多中心临床试验中临床评估新方法(单独 资助并已经在进行),进一步完善具有综合PET+CTA风险心脏病发作的风险预测 通过机器学习得出的分数。这项工作将导致强大而可重复的临床方法 患者的心脏病风险分层,有可能应用于鉴定患者 最昂贵且潜在的风险治疗方法最大。我们的技术也可以在将来使用 临床试验以测试新疗法的效率。此外,新分析将适用于其他宠物 可以开发用于研究冠状动脉脉管系统中其他病理过程的示踪剂。 最终的软件将与执行冠状动力宠物的临床机构共享以促进标准化 和这种新颖的牌匾成像技术的自动化。

项目成果

期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Anatomical validation of automatic respiratory motion correction for coronary 18F-sodium fluoride positron emission tomography by expert measurements from four-dimensional computed tomography.
  • DOI:
    10.1002/mp.15834
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Lassen, Martin Lyngby;Tzolos, Evangelos;Pan, Tinsu;Kwiecinski, Jacek;Cadet, Sebastien;Dey, Damini;Berman, Daniel;Slomka, Piotr
  • 通讯作者:
    Slomka, Piotr
Observer repeatability and interscan reproducibility of 18F-sodium fluoride coronary microcalcification activity.
Diagnostic and prognostic value of Technetium-99m pyrophosphate uptake quantitation for transthyretin cardiac amyloidosis.
Advances in the Assessment of Coronary Artery Disease Activity with PET/CT and CTA.
Optimization of reconstruction and quantification of motion-corrected coronary PET-CT.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Piotr J Slomka其他文献

Piotr J Slomka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Piotr J Slomka', 18)}}的其他基金

Patient-specific Outcome Prediction from Cardiovascular Multimodality Imaging by Artificial Intelligence
人工智能心血管多模态成像的患者特异性结果预测
  • 批准号:
    10353281
  • 财政年份:
    2022
  • 资助金额:
    $ 66.64万
  • 项目类别:
Patient-specific Outcome Prediction from Cardiovascular Multimodality Imaging by Artificial Intelligence
人工智能心血管多模态成像的患者特异性结果预测
  • 批准号:
    10601119
  • 财政年份:
    2022
  • 资助金额:
    $ 66.64万
  • 项目类别:
Integrated analysis of coronary anatomy and biology with 18F-fluoride PET and CT angiography
利用 18F-氟化物 PET 和 CT 血管造影对冠状动脉解剖学和生物学进行综合分析
  • 批准号:
    9755492
  • 财政年份:
    2017
  • 资助金额:
    $ 66.64万
  • 项目类别:
Integrated analysis of coronary anatomy and biology with 18F-fluoride PET and CT angiography
利用 18F-氟化物 PET 和 CT 血管造影对冠状动脉解剖学和生物学进行综合分析
  • 批准号:
    9539728
  • 财政年份:
    2017
  • 资助金额:
    $ 66.64万
  • 项目类别:
High-Performance Automated System For Analysis of Cardiac SPECT
用于心脏 SPECT 分析的高性能自动化系统
  • 批准号:
    7841294
  • 财政年份:
    2009
  • 资助金额:
    $ 66.64万
  • 项目类别:
High-Performance Automated System For Analysis of Cardiac SPECT
用于心脏 SPECT 分析的高性能自动化系统
  • 批准号:
    8089330
  • 财政年份:
    2007
  • 资助金额:
    $ 66.64万
  • 项目类别:
High-Performance Automated System For Analysis of Cardiac SPECT
用于心脏 SPECT 分析的高性能自动化系统
  • 批准号:
    7883401
  • 财政年份:
    2007
  • 资助金额:
    $ 66.64万
  • 项目类别:
High Performance Automated System for Analysis of Fast Cardiac SPECT
用于快速心脏 SPECT 分析的高性能自动化系统
  • 批准号:
    8906912
  • 财政年份:
    2007
  • 资助金额:
    $ 66.64万
  • 项目类别:
Quantitative Prediction of Disease and Outcomes from Next Generation SPECT and CT
通过下一代 SPECT 和 CT 定量预测疾病和结果
  • 批准号:
    9888240
  • 财政年份:
    2007
  • 资助金额:
    $ 66.64万
  • 项目类别:
High-Performance Automated System For Analysis of Cardiac SPECT
用于心脏 SPECT 分析的高性能自动化系统
  • 批准号:
    7636756
  • 财政年份:
    2007
  • 资助金额:
    $ 66.64万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
  • 批准号:
    10602275
  • 财政年份:
    2023
  • 资助金额:
    $ 66.64万
  • 项目类别:
Leveraging Data to Action: Accelerating Emergency Department OUD Care by Improving Data Access and Infrastructure
利用数据采取行动:通过改善数据访问和基础设施加速急诊科 OUD 护理
  • 批准号:
    10745526
  • 财政年份:
    2023
  • 资助金额:
    $ 66.64万
  • 项目类别:
Hemostasis, Hematoma Expansion, and Outcomes After Intracerebral Hemorrhage
脑出血后的止血、血肿扩张和结果
  • 批准号:
    10598712
  • 财政年份:
    2022
  • 资助金额:
    $ 66.64万
  • 项目类别:
Super Resolution Ultrasound Imaging of Vasa Vasorum to Characterize the Progression of Atherosclerotic Plaques and Predict Rupture Vulnerability
血管超分辨率超声成像可表征动脉粥样硬化斑块的进展并预测破裂脆弱性
  • 批准号:
    10557917
  • 财政年份:
    2022
  • 资助金额:
    $ 66.64万
  • 项目类别:
An automated system to differentiate Kawasaki disease from febrile illness with real life clinical datasets in New York City
利用纽约市真实临床数据集区分川崎病和发热性疾病的自动化系统
  • 批准号:
    10477176
  • 财政年份:
    2022
  • 资助金额:
    $ 66.64万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了