High-Performance Automated System For Analysis of Cardiac SPECT
用于心脏 SPECT 分析的高性能自动化系统
基本信息
- 批准号:8089330
- 负责人:
- 金额:$ 35.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-18 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsAutomationBaptist ChurchBlood flowCardiacCardiac DeathCardiologyCardiovascular systemCause of DeathCessation of lifeClinicalCollaborationsCollectionComputer SystemsComputer softwareConsensusCoronary ArteriosclerosisCost SavingsDataData SetDatabasesDefectDetectionDevelopmentDiagnosisDiagnosticDiagnostic testsDiseaseEvaluationEventGenerationsGoalsGrantHeartHospitalsHumanHybridsImageImage AnalysisIndividualInstitutesInstitutionInterobserver VariabilityJapanLeftMedicalMedical centerMethodsModelingMorphologic artifactsMotionMyocardialMyocardial perfusionMyocardiumNormalcyNuclearOregonOutcomePatient SelectionPatientsPerformancePerfusionPhysiciansPlayPositioning AttributeProcessProtocols documentationPublic HealthQualifyingReaderReadingReproducibilityResearch PersonnelResourcesRestRiskRoleSpecific qualifier valueSpecificityStressSystemTechniquesTestingTimeUniversitiesValidationVentricularVentricular FunctionVisualWomanWorkattenuationcostexperienceimage processingimprovedmennext generationnovelprognosticsingle photon emission computed tomographytooltool developmentuptake
项目摘要
DESCRIPTION (provided by applicant): Coronary artery disease (CAD) continues to be a major public health problem. It is the single greatest cause of death for men and women in the US, accounting for 20% of all deaths. While there are effective medical and invasive therapies for CAD, their appropriate use is dependent on accurate detection of the disease and evaluation of cardiac risk in individual patients. Gated myocardial perfusion SPECT (MRS) has played a critical role in this process, providing key information about myocardial perfusion and ventricular function. Over 8 million patients underwent MRS in the US in 2005. Currently, the standard method for MRS interpretation is subjective visual scoring of regional myocardial uptake of perfusion at stress and rest. This visual approach is time-consuming, suffers from inter-observer variability, and is potentially sub-optimal in the detection of abnormalities and estimation of their magnitude. We aim to develop a fully automated computer system for MRS that will surpass the performance of experienced human readers in diagnosing CAD and in predicting cardiac events. This high level of performance will be accomplished by the application of new image processing techniques, improvement of image quality, and automatic regional integration of all available image data. Specifically, we aim to: 1) develop enhanced techniques for perfusion quantification, 2) develop new techniques for quantification of attenuation corrected MRS, and 3) validate performance of the final integrated system diagnostically by comparison to the visual evaluation by multiple experts in a large multi-center study and prognostically by retrospective analysis of a large outcome database. The new system will have the ability to distinguish true abnormalities from imaging artifacts and will detect subtle defects. We hypothesize that the new system will be able to detect CAD and predict outcomes such as cardiac death better than the best attainable visual analysis. Such development will have far-reaching and immediate consequences since this new level of accuracy and automation for MRS can be widely reproduced nationally and internationally. This work will result in increased efficiency of MRS testing and large cost savings due to more accurate diagnosis of CAD and better selection of appropriate treatment. Imaging of myocardial perfusion (heart muscle blood flow) at rest and stress allows physicians to detect disease and predict risk in millions of patients in the US each year, but it is currently limited by the need of visual interpretation, which is dependent on doctor's experience. The investigators propose to develop and validate an automated, highly-accurate and objective computer system which will outperform even experienced physicians in interpreting these images and consequently allow a greater number of lives saved by better selection of patients needing treatment and also resulting in time- and cost-savings.
描述(由申请人提供):冠状动脉疾病(CAD)仍然是一个主要的公共卫生问题。这是美国男性和女性的最大死亡原因,占所有死亡的20%。尽管有有效的医疗和侵入性CAD疗法,但它们的适当使用取决于对疾病的准确检测和对个别患者心脏风险的评估。门控心肌灌注SPECT(MRS)在此过程中发挥了关键作用,提供了有关心肌灌注和心室功能的关键信息。 2005年,超过800万患者在美国接受了MRS。目前,MRS解释的标准方法是在压力和休息下进行灌注的区域心肌摄取的主观视觉评分。这种视觉方法是耗时的,患有观察者间的变异性,并且在异常检测和幅度的估计中可能是最佳的。我们旨在为MRS开发全自动的计算机系统,该系统将超过经验丰富的人类读者在诊断CAD和预测心脏事件方面的表现。这种高度的性能将通过应用新的图像处理技术,改进图像质量以及所有可用图像数据的区域集成来实现。具体而言,我们的目的是:1)开发用于灌注定量的增强技术,2)开发用于量化衰减校正的MRS的新技术,以及3)通过比较大型多中心研究中的多个专家的视觉评估,通过对大型成果数据的回顾性分析进行大型专家的视觉评估来验证最终集成系统的性能。新系统将具有区分真实异常与成像伪像的能力,并将检测到细微的缺陷。我们假设新系统将能够检测CAD并预测诸如心脏死亡之类的结果,而不是最佳可达到的视觉分析。这种发展将带来深远的影响和直接的后果,因为这种新的准确性和自动化的MRS可以在国内和国际上广泛繁殖。这项工作将导致MRS测试效率提高,并且由于更准确地诊断了CAD和更好地选择适当的治疗,因此可以提高效率。静止和压力下心肌灌注(心肌血流)的成像使医生每年都能检测到美国数百万患者的疾病并预测疾病的风险,但目前受到视觉解释的需要,这取决于医生的经验。调查人员建议开发和验证一种自动化,高度准确和客观的计算机系统,该系统甚至在解释这些图像方面甚至会超越经验丰富的医生,因此允许通过更好地选择需要治疗的患者挽救的生命,并导致时间和成本节省。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Piotr J Slomka其他文献
Piotr J Slomka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Piotr J Slomka', 18)}}的其他基金
Patient-specific Outcome Prediction from Cardiovascular Multimodality Imaging by Artificial Intelligence
人工智能心血管多模态成像的患者特异性结果预测
- 批准号:
10353281 - 财政年份:2022
- 资助金额:
$ 35.78万 - 项目类别:
Patient-specific Outcome Prediction from Cardiovascular Multimodality Imaging by Artificial Intelligence
人工智能心血管多模态成像的患者特异性结果预测
- 批准号:
10601119 - 财政年份:2022
- 资助金额:
$ 35.78万 - 项目类别:
Integrated analysis of coronary anatomy and biology with 18F-fluoride PET and CT angiography
利用 18F-氟化物 PET 和 CT 血管造影对冠状动脉解剖学和生物学进行综合分析
- 批准号:
9755492 - 财政年份:2017
- 资助金额:
$ 35.78万 - 项目类别:
Integrated analysis of coronary anatomy and biology with 18F-fluoride PET and CT angiography
利用 18F-氟化物 PET 和 CT 血管造影对冠状动脉解剖学和生物学进行综合分析
- 批准号:
9539728 - 财政年份:2017
- 资助金额:
$ 35.78万 - 项目类别:
Integrated analysis of coronary anatomy and biology with 18F-fluoride PET and CT angiography
利用 18F-氟化物 PET 和 CT 血管造影对冠状动脉解剖学和生物学进行综合分析
- 批准号:
10015326 - 财政年份:2017
- 资助金额:
$ 35.78万 - 项目类别:
High-Performance Automated System For Analysis of Cardiac SPECT
用于心脏 SPECT 分析的高性能自动化系统
- 批准号:
7841294 - 财政年份:2009
- 资助金额:
$ 35.78万 - 项目类别:
High-Performance Automated System For Analysis of Cardiac SPECT
用于心脏 SPECT 分析的高性能自动化系统
- 批准号:
7883401 - 财政年份:2007
- 资助金额:
$ 35.78万 - 项目类别:
High Performance Automated System for Analysis of Fast Cardiac SPECT
用于快速心脏 SPECT 分析的高性能自动化系统
- 批准号:
8906912 - 财政年份:2007
- 资助金额:
$ 35.78万 - 项目类别:
Quantitative Prediction of Disease and Outcomes from Next Generation SPECT and CT
通过下一代 SPECT 和 CT 定量预测疾病和结果
- 批准号:
9888240 - 财政年份:2007
- 资助金额:
$ 35.78万 - 项目类别:
High-Performance Automated System For Analysis of Cardiac SPECT
用于心脏 SPECT 分析的高性能自动化系统
- 批准号:
7636756 - 财政年份:2007
- 资助金额:
$ 35.78万 - 项目类别:
相似国自然基金
新一代网络环境下对称密码算法的自动化分析与设计技术研究
- 批准号:62032014
- 批准年份:2020
- 资助金额:297 万元
- 项目类别:重点项目
基于自动化搜索与机器学习的分组密码算法分析
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于组合机器学习算法的病理性近视眼底多模态影像资料自动化定量分析研究
- 批准号:81970846
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
考虑资源约束的柔性自动化制造单元调度优化研究
- 批准号:71901176
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
轻量级分组密码算法的设计和分析
- 批准号:61902100
- 批准年份:2019
- 资助金额:30.0 万元
- 项目类别:青年科学基金项目
相似海外基金
EpiMoRPH: A simulation environment for generating spatially-refined intervention strategies for the control of infectious disease
EpiMoRPH:用于生成控制传染病的空间精细干预策略的模拟环境
- 批准号:
10412872 - 财政年份:2022
- 资助金额:
$ 35.78万 - 项目类别:
Towards the automation of MR spectroscopic imaging in patients with glioblashoma
胶质母细胞瘤患者磁共振波谱成像的自动化
- 批准号:
9191930 - 财政年份:2016
- 资助金额:
$ 35.78万 - 项目类别:
A Novel System for Non-Invasive Characterization of Stem Cell-Derived Cardiomyocytes
用于干细胞衍生心肌细胞非侵入性表征的新系统
- 批准号:
8831991 - 财政年份:2015
- 资助金额:
$ 35.78万 - 项目类别:
Models, signals, and distributed bio-behavioral control of exercise in diabetes
糖尿病运动的模型、信号和分布式生物行为控制
- 批准号:
8971447 - 财政年份:2015
- 资助金额:
$ 35.78万 - 项目类别: