Towards the automation of MR spectroscopic imaging in patients with glioblashoma

胶质母细胞瘤患者磁共振波谱成像的自动化

基本信息

  • 批准号:
    9191930
  • 负责人:
  • 金额:
    $ 4.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-24 至 2021-06-23
  • 项目状态:
    已结题

项目摘要

Glioblastoma is the most common adult primary brain tumor and is highly aggressive in its disease course. Despite advances in neurosurgical resection, radiation targeting, and chemotherapy, the prognosis remains grim with a median survival of just 15 months. The effectiveness of current radiation therapy strategies is severely limited by shortcomings in the imaging modalities used to develop treatment plans. Current radiation therapy planning is mainly based on contrast-enhanced T1-weighted MRI, which identifies high grade tumors that are immediately associated with leaky neovasculature. Although it is an excellent diagnostic tool to identify high grade from low grade tumors, it is unable to signal occult infiltration beyond the core of the tumor. Though many believe GBM to be an incurable disease, we believe we have identified a method for optimizing tumor targeting that will increase the effectiveness of radiation therapy. A significant component of the current problem in GBM therapy is the lack of treatment for non-enhancing regions that are significantly infiltrated by neoplastic glioma cells without neovascularization. This untreated population undoubtedly leads to early recurrence. The proposed study addresses an important step toward translating an advanced quantitative imaging modality that complements the conventional imaging that is capable of reliably revealing glioma- infiltrated regions for precise, personalized treatment targeting. Proton spectroscopic magnetic resonance imaging (sMRI) is an alternative modality able to identify endogenous metabolism within tissue without the need for exogenous contrast, and has been shown to identify the metabolic abnormalities associated with tumor beyond the regions identified by T1-weighted MRI. The clinical integration of sMRI in patient management has been limited due to the computational challenges of analysis of sMRI data. Two key hurdles to be overcome are the insufficiency of filters to remove image artifacts and the necessity of quantification of metabolic levels relative to a patient's baseline metabolism. As a result, sMRI processing requires skilled user intervention and many hours of computational and user time. To automate this pipeline and provide clinically useful information to oncologists, we seek to develop a software framework for the automated and expedient processing of sMRI for use in radiation therapy planning. We will use novel advances in the fields of high performance computing and deep learning, an approach to computation that has shattered benchmarks in many medical and non-medical problems. Specifically, we will develop filters for removing artifacts, algorithms for personalized diagnosis of tumor infiltration, and explore deep learning as a method to synthesize sMRI data with anatomical and clinical metrics in a fully automated fashion. Success in the proposed work will produce a “scanner-to-clinician” platform for quantitative, expedient, and objective analysis methods to integrate sMRI into the clinical radiation therapy planning paradigm. Ultimately, we believe this additional modality in the physician's tool belt will lead to better outcomes in patients suffering from this debilitating disease.
胶质母细胞瘤是最常见的成年原发性脑肿瘤,其疾病病程高度侵略性。 尽管神经外科切除,辐射靶向和化学疗法的进步,预后仍然存在 严峻的中位生存仅15个月。当前放射治疗策略的有效性是 受到制定治疗计划的成像方式的缺点受到严重限制。电流辐射 治疗计划主要基于对比增强的T1加权MRI,该MRI识别高级肿瘤 立即与泄漏的新生血管系统有关。虽然这是一个出色的诊断工具 低级肿瘤的高级别无法向肿瘤核心以外的神秘浸润发出信号。尽管 许多人认为GBM是一种无法治愈的疾病,我们认为我们已经确定了一种优化肿瘤的方法 靶向将提高放射治疗的有效性。电流的重要组成部分 GBM疗法中的问题是缺乏针对非增强区域的治疗 肿瘤神经胶质瘤细胞,没有新血管形成。这个未经处理的人口无疑会导致早期 复发。拟议的研究探讨了翻译高级定量的重要一步 成像方式完成了传统成像,该成像能够可靠地揭示神经胶质瘤 - 精确的个性化治疗靶向渗透区域。质子光谱磁共振 成像(SMRI)是一种替代方式,能够鉴定组织内的内源代谢而没有 需要外源性对比,并已证明可以识别与 通过T1加权MRI确定的区域之外的肿瘤。 SMRI在患者中的临床整合 由于SMRI数据分析的计算挑战,管理人员受到限制。两个关键障碍 要克服 代谢水平相对于患者的基线代谢。结果,SMRI处理需要熟练的用户 干预以及数小时的计算和用户时间。自动化这条管道并在临床上提供 向肿瘤学家提供了有用的信息,我们试图为自动化和平稳的 将SMRI处理用于放射治疗计划。我们将在高领域中使用新颖的进步 绩效计算和深度学习,一种计算方法,其基准破坏了 许多医学和非医疗问题。特别是,我们将开发用于删除文物,算法的过滤器 用于个性化肿瘤浸润的诊断,并探索深度学习作为合成SMRI数据的方法 具有完全自动化的方式的解剖学和临床指标。拟议工作的成功将产生 用于整合SMRI的定量,权宜和客观分析方法的“扫描仪到阵容”平台 进入临床放射治疗计划范例。最终,我们相信 物理学的工具带将导致患有这种使人衰弱的疾病的患者更好地结局。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Saumya Gurbani的其他基金

Towards the automation of MR spectroscopic imaging in patients with glioblashoma
胶质母细胞瘤患者磁共振波谱成像的自动化
  • 批准号:
    9926827
    9926827
  • 财政年份:
    2016
  • 资助金额:
    $ 4.36万
    $ 4.36万
  • 项目类别:
Towards the automation of MR spectroscopic imaging in patients with glioblashoma
胶质母细胞瘤患者磁共振波谱成像的自动化
  • 批准号:
    9312109
    9312109
  • 财政年份:
    2016
  • 资助金额:
    $ 4.36万
    $ 4.36万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
  • 批准号:
    10585388
    10585388
  • 财政年份:
    2023
  • 资助金额:
    $ 4.36万
    $ 4.36万
  • 项目类别:
RP3 PrEP Choice
RP3 PrEP 选择
  • 批准号:
    10595903
    10595903
  • 财政年份:
    2023
  • 资助金额:
    $ 4.36万
    $ 4.36万
  • 项目类别:
Person-centered quality measurement and management in a system for addictions treatment in New York State
纽约州成瘾治疗系统中以人为本的质量测量和管理
  • 批准号:
    10772463
    10772463
  • 财政年份:
    2023
  • 资助金额:
    $ 4.36万
    $ 4.36万
  • 项目类别:
Maximizing the reach of universal child sexual abuse prevention: An equivalence trial
最大限度地扩大普遍预防儿童性虐待的范围:等效试验
  • 批准号:
    10739900
    10739900
  • 财政年份:
    2023
  • 资助金额:
    $ 4.36万
    $ 4.36万
  • 项目类别:
Strategies to improve Utilization of Post-overdose Evidence-based Risk mitigation among Non-fatal Overdoses in VA (SUPER NOVA)
提高药物过量后利用率的策略 基于证据的 VA 非致命药物过量风险缓解策略 (SUPER NOVA)
  • 批准号:
    10425936
    10425936
  • 财政年份:
    2023
  • 资助金额:
    $ 4.36万
    $ 4.36万
  • 项目类别: