An automated system to differentiate Kawasaki disease from febrile illness with real life clinical datasets in New York City
利用纽约市真实临床数据集区分川崎病和发热性疾病的自动化系统
基本信息
- 批准号:10477176
- 负责人:
- 金额:$ 34.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAgeAlgorithmsAneurysmAutomationBig DataBig Data MethodsBiological MarkersBloodBostonBusinessesCardiovascular systemCaringCessation of lifeChildChildhoodClinicalColoradoCommunitiesComputer AssistedCoronary AneurysmCountyDataData SetData SourcesDecision MakingDiagnosisDiagnostic testsDiseaseDisease ManagementEchocardiographyElectronic Health RecordEnvironmentEthnic OriginEthnic groupEvaluationFeverGoalsGoldHealthHealth PersonnelHealthcareHeart DiseasesIllness DaysIncidenceInfectionInflammatoryInternationalInterventionIntravenous ImmunoglobulinsKnowledgeLaboratoriesLifeLong IslandLongterm Follow-upMedicalMedicineModelingMucocutaneous Lymph Node SyndromeMyocardial InfarctionNew York CityOrangesOutcomePatient CarePatient riskPatientsPatternPediatric HospitalsPerformancePhasePopulationPopulation HeterogeneityPrecision HealthPredictive AnalyticsProcessProviderPublic HealthRaceRiskRisk FactorsScreening procedureSmall Business Technology Transfer ResearchSystemTaiwanTestingTimeTranslatingTranslationsUniversitiesUpdateValidationVisitaccurate diagnosisbasebilling dataclinical decision-makingcloud basedcohortcommercializationconnected carecostdata infrastructuredata warehousediagnostic accuracydifferential expressiondisease diagnosticeconomic determinantempoweredethnic diversitygenomic dataimprovedindividual patientinnovationmortalitypatient screeningpoint of carepopulation healthscreeningsocialsocial determinantsstatistical learningstructured datatooltv watching
项目摘要
ABSTRACT – Kawasaki disease (KD) is the most common cause of acquired heart disease in
children. Treatment with intravenous immunoglobulin (IVIG) reduces the incidence of coronary
aneurysms and risk of long-term cardiovascular complications. IVIG is recommended to be
given within 10 days of illness; however only 4.7% receive the correct diagnosis at the first
medical visit. Timely and accurately diagnosis of KD is critical, yet there isn’t a gold standard
diagnostic test. A challenge of diagnosis is that the clinical signs of KD overlap those of other
pediatric febrile illnesses. We previously applied statistical learning using clinical and laboratory
test variables to differentiate KD from febrile illnesses and validated the algorithm in five
children’s hospitals in the US. Results showed its potential of being a computer-assist tool of
decision making at point of care in the settings where echocardiography would not be readily
available. Before translation and commercialization, the algorithm needs to be validated in a
large, diverse population and integrated into a patient surveillance platform as a real-time
screening tool for healthcare providers to use. In this project, we propose three specific aims to
address the central hypothesis that a KD screening tool incorporating our previously identified
and newly found patient-level variables in the electronic health record (EHR) can differentiate
KD from clinically similar febrile illnesses in an ethnically diverse pediatric population in New
York City (NYC). We will collaborate with Healthix, the nation’s largest public health information
exchange (HIE) with data of over 16 million patients from NYC. In Aim 1, we will set up a
pediatric EHR warehouse of patients with KD and other febrile illnesses from Healthix NYC data
sources. In Aim 2, we will identify features that are differentially expressed between patients
with KD and patients with other febrile illnesses, and develop an improved algorithm to
differentiate KD from other febrile illnesses. Finally, we will integrate the algorithm into the HBI
Spotlight Solutions. The Spotlight Solutions include a healthcare surveillance platform with high-
capacity data infrastructure and risk engines to offer AI solutions to providers. We expect
ultimately an HIE-based pediatric KD assessment system will be ready to alert HIE participating
providers for timely evaluation, treatment and follow up for the long-term cardiovascular
sequelae in NYC and other communities.
摘要:川崎病(KD)是导致获得性心脏病的最常见原因。
儿童静脉注射免疫球蛋白(IVIG)治疗可降低冠心病的发病率。
建议使用 IVIG 治疗动脉瘤和长期心血管并发症的风险。
患病后 10 天内进行诊断;但只有 4.7% 的患者在第一次时就得到了正确的诊断
及时、准确地诊断川崎病至关重要,但尚无黄金标准。
诊断测试的一个挑战是川崎病的临床症状与其他疾病的症状重叠。
我们之前通过临床和实验室应用统计学习。
测试变量以区分 KD 和发热性疾病,并在五个阶段验证了该算法
美国儿童医院的结果显示了其作为计算机辅助工具的潜力。
在无法轻易获得超声心动图的情况下在护理点做出决策
在翻译和商业化之前,需要对算法进行验证。
庞大、多样化的人群,并作为实时集成到患者监测平台中
在这个项目中,我们提出了三个具体目标。
解决了中心假设,即 KD 筛选工具结合了我们之前确定的
电子健康记录 (EHR) 中新发现的患者级别变量可以区分
新州不同种族儿童群体中临床相似发热性疾病导致的川崎病
我们将与美国最大的公共卫生信息公司 Healthix 合作。
与纽约市超过 1600 万患者的数据进行交换(HIE) 在目标 1 中,我们将建立一个
来自 Healthix NYC 数据的 KD 和其他发热性疾病患者的儿科 EHR 仓库
在目标 2 中,我们将识别患者之间差异表达的特征。
患有川崎病和患有其他发热性疾病的患者,并开发一种改进的算法
最后,我们将把 KD 与其他发热性疾病区分开来。
Spotlight 解决方案。Spotlight 解决方案包括一个具有高功能的医疗保健监控平台。
我们期望能够为提供商提供人工智能解决方案的能力数据基础设施和风险引擎。
最终,基于 HIE 的儿科 KD 评估系统将准备好提醒 HIE 参与
提供者对长期心血管疾病进行及时评估、治疗和随访
纽约市和其他社区的后遗症。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Single center blind testing of a US multi-center validated diagnostic algorithm for Kawasaki disease in Taiwan.
- DOI:10.3389/fimmu.2022.1031387
- 发表时间:2022
- 期刊:
- 影响因子:7.3
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAMES W SCHILLING其他文献
JAMES W SCHILLING的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAMES W SCHILLING', 18)}}的其他基金
An automated system to interpret echocardiography to predict adverse outcomes in patients with right ventricular dysfunction in daily hospital practice
一种解释超声心动图的自动化系统,以预测日常医院实践中右心室功能障碍患者的不良后果
- 批准号:
10326000 - 财政年份:2021
- 资助金额:
$ 34.59万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 34.59万 - 项目类别:
Targeting Alcohol-Opioid Co-Use Among Young Adults Using a Novel MHealth Intervention
使用新型 MHealth 干预措施针对年轻人中酒精与阿片类药物的同时使用
- 批准号:
10456380 - 财政年份:2023
- 资助金额:
$ 34.59万 - 项目类别:
Sex-specific Impact of Prenatal Opioids on Brain Reward Signaling and Neonatal Feeding Regulation
产前阿片类药物对大脑奖赏信号和新生儿喂养调节的性别特异性影响
- 批准号:
10506345 - 财政年份:2023
- 资助金额:
$ 34.59万 - 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 34.59万 - 项目类别: