SCH: Leveraging Clinical Time Series to Learn Optimal Treatment of Acute Dyspnea
SCH:利用临床时间序列学习急性呼吸困难的最佳治疗方法
基本信息
- 批准号:10015336
- 负责人:
- 金额:$ 23.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-10 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAffectAlgorithmsBlood PressureChronic Obstructive Airway DiseaseClinicalClinical DataComputer Vision SystemsCongestive Heart FailureDataData SetDecision MakingDiagnosisDropsDyspneaElectronic Health RecordEngineeringEnsureEvaluationEventGoalsHealthHealthcareHospitalizationHospitalsImageInfrastructureLearningLinear ModelsMachine LearningMethodsModelingMoralityOutcomePathologic ProcessesPatient RightsPatient-Focused OutcomesPatientsPerformancePhysiciansPneumoniaPoliciesPositioning AttributeProtocols documentationPsychological reinforcementQuality of CareResearchResearch PersonnelRespiratory FailureRewardsRight to TreatmentsSample SizeSamplingSelection for TreatmentsSeriesShortness of BreathSignal TransductionSigns and SymptomsSocietiesStreamSymptomsSystemTechniquesTest ResultTheoretical StudiesTimeTrainingVariantWorkbaseclinical careclinical databaseclinical decision supportclinical practiceclinically relevantconvolutional neural networkdeep learningdeep neural networkdesignhealth datahigh dimensionalityimprovedinnovationinterdisciplinary collaborationlearning algorithmlearning strategymortalitynetwork architecturenoveloptimal treatmentspatient responsepatient stratificationprospectivesuccesssupervised learningsupport toolstheoriestooltreatment strategy
项目摘要
The ability to rapidly match the right patients to the right treatments at the right time is critical to ensuring patients
receive high quality care. The vast majority of machine learning applications in healthcare focus on diagnosing or
stratifying patients for a particular outcome. In contrast, reinforcement learning (RL) aims to learn how clinical states
(i.e., sets of signs, symptoms, and test results) respond to specific sequences of treatments, with the goal of
optimizing clinical outcomes. RL does not aim to diagnose, but infers diagnosis based on a patient's response to
specific treatments--in many ways mimicking how clinicians operate in practice. This proposal will develop a novel
clinician-in-the-loop reinforcement learning (RL) framework that analyzes electronic health record (EHR) clinical
time-series data to support physician decision making, iteratively providing physicians the estimated outcome of
potential treatment strategies. Our topic of focus for this work is the evaluation and treatment of patients hospitalized
with acute dyspnea (shortness of breath) and signs of impending respiratory failure. Acute dyspnea is an ideal
condition for an RL approach, since it can be due to three overlapping conditions: congestive heart failure, chronic
obstructive pulmonary disease and pneumonia. Determining optimal treatment for these patients is clinically difficult,
as a patient's presentation is frequently ambiguous, rapidly changing, and often due to multiple causes.
Inappropriate treatment may occur in up to a third of patients leading to increased mortality. While developing this
RL framework, we will also develop methods to learn more useful representations of high-dimensional clinical
time-series data to improve the efficiency of RL model training. In addition, given the challenges of working with
observational health data, we will develop new methods for evaluation of learned policies and develop new theory to
better understand the limitations of RL using observational data. The project has four aims: 1) create a shareable,
de-identified EHR time-series dataset of 35,000 patients with acute dyspnea, 2) develop techniques for exploiting
invariances In tasks involving clinical time-series data to improve the efficiency of RL model training, 3) develop and
evaluate an RL-based framework for learning optimal treatment policies for acute dyspnea, and 4) prospectively
validate the learned treatment model. This research will result in new techniques for learning representations from
time-series data and will study both the theoretical and practical limitations of RL using observational clinical data,
leading to key advancements in ML and RL for clinical care. The tools developed for clinical decision support in this
proposal have the potential for high impact because of their ability to generalize beyond the problem studied here to
other conditions, laying the groundwork for clinical systems that directly impact society by aiding in the timely and
appropriate treatment of patients.
在正确的时间迅速将正确患者与正确治疗相匹配的能力对于确保患者至关重要
获得高质量的护理。医疗保健中绝大多数机器学习应用都集中在诊断或
对患者进行特定结果进行分层。相比之下,增强学习(RL)旨在了解临床状态
(即,一组体征,症状和测试结果)应对特定的治疗序列,目的是
优化临床结果。 RL的目的不是诊断,而是根据患者对
特定的治疗方法 - 通过许多方式模仿临床医生在实践中的运作方式。该提议将发展一部小说
分析电子健康记录(EHR)临床的临床医生在循环增强学习(RL)框架
时间序列数据支持医师决策,迭代地为医师提供了估计的结果
潜在的治疗策略。这项工作的重点主题是对住院的患者的评估和治疗
急性呼吸困难(呼吸急促)和即将发生的呼吸衰竭迹象。急性呼吸困难是理想的
RL方法的条件,因为这可能是由于三个重叠的条件:充血性心力衰竭,慢性
阻塞性肺部疾病和肺炎。确定这些患者的最佳治疗在临床上很难
由于患者的表现经常模棱两可,迅速变化,并且通常是由于多种原因。
最多三分之一的患者可能会发生不当治疗,导致死亡率增加。在开发此过程的同时
RL框架,我们还将开发方法来学习高维临床的更多有用表示
时间序列数据以提高RL模型培训的效率。此外,考虑到与之合作的挑战
观察健康数据,我们将开发新的方法来评估学习政策,并开发新的理论
更好地了解使用观察数据的RL的局限性。该项目有四个目标:1)创建一个可共享的,
35,000例急性呼吸困难患者的去识别的EHR时间序列数据集,2)开发用于利用的技术
涉及临床时间序列数据以提高RL模型培训效率的任务中的不变性,3)开发和
评估基于RL的框架,用于学习急性呼吸困难的最佳治疗政策,4)前瞻性
验证学习的治疗模型。这项研究将为学习表征提供新的技术
时间序列数据,并将使用观察性临床数据研究RL的理论和实际局限性,
导致ML和RL的关键进步用于临床护理。为此开发的用于临床决策支持的工具
提案具有高影响力的潜力,因为它们有能力超越此处研究的问题
其他条件,为临床系统奠定了基础,这些系统通过及时和
适当的患者治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael William Sjoding其他文献
Michael William Sjoding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael William Sjoding', 18)}}的其他基金
Human-AI Collaborations to Improve Accuracy and Mitigate Bias in Acute Dyspnea Diagnosis
人机协作提高急性呼吸困难诊断的准确性并减少偏差
- 批准号:
10693285 - 财政年份:2021
- 资助金额:
$ 23.52万 - 项目类别:
Human-AI Collaborations to Improve Accuracy and Mitigate Bias in Acute Dyspnea Diagnosis
人机协作提高急性呼吸困难诊断的准确性并减少偏差
- 批准号:
10491373 - 财政年份:2021
- 资助金额:
$ 23.52万 - 项目类别:
Human-AI Collaborations to Improve Accuracy and Mitigate Bias in Acute Dyspnea Diagnosis
人机协作提高急性呼吸困难诊断的准确性并减少偏差
- 批准号:
10272748 - 财政年份:2021
- 资助金额:
$ 23.52万 - 项目类别:
Human-AI Collaborations to Improve Accuracy and Mitigate Bias in Acute Dyspnea Diagnosis
人机协作提高急性呼吸困难诊断的准确性并减少偏差
- 批准号:
10687507 - 财政年份:2021
- 资助金额:
$ 23.52万 - 项目类别:
SCH: Leveraging Clinical Time Series to Learn Optimal Treatment of Acute Dyspnea
SCH:利用临床时间序列学习急性呼吸困难的最佳治疗方法
- 批准号:
10221055 - 财政年份:2019
- 资助金额:
$ 23.52万 - 项目类别:
SCH: Leveraging Clinical Time Series to Learn Optimal Treatment of Acute Dyspnea
SCH:利用临床时间序列学习急性呼吸困难的最佳治疗方法
- 批准号:
9927810 - 财政年份:2019
- 资助金额:
$ 23.52万 - 项目类别:
SCH: Leveraging Clinical Time Series to Learn Optimal Treatment of Acute Dyspnea
SCH:利用临床时间序列学习急性呼吸困难的最佳治疗方法
- 批准号:
10458527 - 财政年份:2019
- 资助金额:
$ 23.52万 - 项目类别:
Data-Driven Identification of the Acute Respiratory Distress Syndrome
数据驱动的急性呼吸窘迫综合征识别
- 批准号:
9292908 - 财政年份:2017
- 资助金额:
$ 23.52万 - 项目类别:
Data-Driven Identification of the Acute Respiratory Distress Syndrome
数据驱动的急性呼吸窘迫综合征识别
- 批准号:
9908166 - 财政年份:2017
- 资助金额:
$ 23.52万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 23.52万 - 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 23.52万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 23.52万 - 项目类别:
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
- 批准号:
10702126 - 财政年份:2023
- 资助金额:
$ 23.52万 - 项目类别:
Rapid measurement of novel harm reduction housing on HIV risk, treatment uptake, drug use and supply
快速测量新型减害住房对艾滋病毒风险、治疗接受情况、毒品使用和供应的影响
- 批准号:
10701309 - 财政年份:2023
- 资助金额:
$ 23.52万 - 项目类别: