Data-Driven Identification of the Acute Respiratory Distress Syndrome
数据驱动的急性呼吸窘迫综合征识别
基本信息
- 批准号:9908166
- 负责人:
- 金额:$ 17.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdult Respiratory Distress SyndromeAffectBayesian NetworkBiometryCaringClinicalClinical InformaticsClinical ResearchClinical TrialsClinical Trials NetworkComplementComplexCritical IllnessDataData ScienceDevelopmentDiagnosisDiagnosticDoctor of PhilosophyEducational StatusElectronic Health RecordEnrollmentEnsureEnvironmentEpidemiologyEvidence based practiceEvidence based treatmentFutureGoalsHourIndividualInfrastructureIntensive Care UnitsInvestigationKnowledgeLaboratoriesLifeLungLung diseasesMachine LearningMentored Research Scientist Development AwardMentorsMethodsMichiganModelingMonitorNational Heart, Lung, and Blood InstituteNatural HistoryNatural Language ProcessingParticipantPatient CarePatientsPerformancePhysiciansPositioning AttributePrevention trialProcessReal-Time SystemsRecordsReference StandardsResearchResearch DesignResearch PersonnelResearch Project GrantsResolutionRetrospective cohortRetrospective cohort studyRiskRisk EstimateRisk FactorsSavingsSpecificityStatistical ModelsSyndromeSystemTechniquesTestingTextTimeTrainingUniversitiesValidationWorkbasebig biomedical datacareerclinical phenotypeclinical practicecohortdesigndigitalelectronic dataevidence basehealth datahigh riskhuman diseaseimprovedinsightmachine learning methodmeetingsmonitoring devicemortalitynovelnovel strategiesnovel therapeuticsphenotypic datapredictive modelingpreventprospectiverecruitrespiratory healthrisk prediction modelstatistical learning
项目摘要
PROJECT SUMMARY/ABSTRACT
This K01 proposal will complete Michael Sjoding, MD, MSc's training towards his long-term career goal of
improving care of patients with acute respiratory disease. Dr. Sjoding is a Pulmonary and Critical Physician at
the University of Michigan with master's level training in clinical study design and biostatistics. This proposal
builds on Dr. Sjoding's prior expertise, providing protected time for additional training in data science, the
technical methods for deriving new knowledge about human disease from “Big Biomedical Data” in the rich
training environment at the University of Michigan. The project's research goal is to develop real-time systems
to improve accuracy and timeliness of Acute Respiratory Distress Syndrome (ARDS) diagnosis using
electronic health record data. ARDS is a critical illness syndrome affecting 200,000 people each year with high
mortality. Under-recognition of this syndrome is the key barrier to providing evidence-based care to patients
with ARDS. The research will be completed under the guidance of primary mentor Theodore J. Iwashyna, MD,
PhD and co-mentors Timothy P. Hofer, MD, MSc, and Kayvan Najarian, PhD, and a scientific advisory board
with additional expertise in data science and applied clinical informatics. The 5-year plan includes didactic
coursework, mentored research, and professional development activities, with defined milestones to ensure
successful transition to independence. The mentored research has 2 specific Aims:
Aim 1. Develop a novel system for identifying ARDS digital signatures in electronic health data to accurately
identify patients meeting ARDS criteria.
Aim 2. Define the early natural history of developing ARDS, to more accurately predict patients' future ARDS
risk.
Both Aims will utilize rigorous 2-part designs, with the ARDS diagnostic and prediction models developed in the
same retrospective cohort and validated in temporally distinct cohorts. In completing these high-level aims, the
research will leverage high-resolution electronic health record and beside-monitoring device data to study
ARDS with unprecedented detail, providing new insights into ARDS epidemiology and early natural history.
This work will build to at least two R01 proposals: (1) testing the impact of a real-time electronic health record-
based ARDS diagnostic system to improve evidence-based care practice, (2) defining ARDS subtypes using
deep clinical phenotypic data. The work will build toward a programmatic line of research using high-resolution
electronic health data to improve understanding of critical illness and respiratory disease. In completing this
proposal, Dr. Sjoding will acquire unique computational expertise in data science methods, complementing his
previous training, which he can then readily apply to address other research challenges in respiratory health.
The ambitious but feasible training and mentored research proposed during this K01 award will allow him to
achieve his goal of becoming an independent investigator.
项目摘要/摘要
该K01提案将完成MSC的迈克尔·萨德林(Michael Sjoding),这是MSC的培训,以实现他的长期职业目标
改善Acciratory疾病的患者。
密歇根大学接受了临床研究设计和生物统计学的硕士培训
建立在Sjoding博士先前的专业知识的基础上,为数据科学的额外培训提供了受保护的时间。
从富人的“大生物医学数据”中获取有关人类疾病的新知识的技术方法。
密歇根大学的培训环境。
提高急性呼吸窘迫综合征(ARDS)诊断的准确性和及时性
电子记录数据是一种危重的疾病综合症,每个人都有200,000人。
死亡率不足。
与ARDS。
博士学位和联合官员蒂莫西·霍弗(Timothy P.
具有数据科学和应用临床信息学方面的其他专业知识。
课程工作,指导研究和专业发展活动,并具有确定的里程碑
成功过渡到独立性。
目标1。开发一种新型系统,用于识别电子健康中的ARDS数字特征以准确
确定符合ARDS标准的患者。
目标2。定义开发ARDS的性质历史,以更准确地预测患者的未来ARDS
风险。
这两个目标都将利用严格的2部分设计,并在ARDS诊断模型中开发了ARDS诊断模型
相同的回顾性队列和有效在暂时的队列中有效。
使用杠杆高分辨率电子健康记录和监控设备数据进行研究的研究
具有前所未有的细节的Ards,为ARDS流行病学和早期自然历史提供了新的。
这项工作将至少提交两个R01提案:(1)测试实时电子健康记录的影响 -
基于ARDS诊断系统以改善基于证据的护理实践,(2)使用
深度临床表型数据。
电子健康数据,以提高对临界和呼吸系统疾病的理解
提案,Sjoding博士将获得数据科学方法中独特的计算专业知识,并补充他的
以前的培训,他可以将其重新应用于呼吸健康中的其他研究挑战。
在此K01奖中,他的良好但可行的培训和指导的研究指导了他
实现他成为独立调查员的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael William Sjoding其他文献
Michael William Sjoding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael William Sjoding', 18)}}的其他基金
Human-AI Collaborations to Improve Accuracy and Mitigate Bias in Acute Dyspnea Diagnosis
人机协作提高急性呼吸困难诊断的准确性并减少偏差
- 批准号:
10693285 - 财政年份:2021
- 资助金额:
$ 17.27万 - 项目类别:
Human-AI Collaborations to Improve Accuracy and Mitigate Bias in Acute Dyspnea Diagnosis
人机协作提高急性呼吸困难诊断的准确性并减少偏差
- 批准号:
10491373 - 财政年份:2021
- 资助金额:
$ 17.27万 - 项目类别:
Human-AI Collaborations to Improve Accuracy and Mitigate Bias in Acute Dyspnea Diagnosis
人机协作提高急性呼吸困难诊断的准确性并减少偏差
- 批准号:
10272748 - 财政年份:2021
- 资助金额:
$ 17.27万 - 项目类别:
Human-AI Collaborations to Improve Accuracy and Mitigate Bias in Acute Dyspnea Diagnosis
人机协作提高急性呼吸困难诊断的准确性并减少偏差
- 批准号:
10687507 - 财政年份:2021
- 资助金额:
$ 17.27万 - 项目类别:
SCH: Leveraging Clinical Time Series to Learn Optimal Treatment of Acute Dyspnea
SCH:利用临床时间序列学习急性呼吸困难的最佳治疗方法
- 批准号:
10015336 - 财政年份:2019
- 资助金额:
$ 17.27万 - 项目类别:
SCH: Leveraging Clinical Time Series to Learn Optimal Treatment of Acute Dyspnea
SCH:利用临床时间序列学习急性呼吸困难的最佳治疗方法
- 批准号:
9927810 - 财政年份:2019
- 资助金额:
$ 17.27万 - 项目类别:
SCH: Leveraging Clinical Time Series to Learn Optimal Treatment of Acute Dyspnea
SCH:利用临床时间序列学习急性呼吸困难的最佳治疗方法
- 批准号:
10221055 - 财政年份:2019
- 资助金额:
$ 17.27万 - 项目类别:
SCH: Leveraging Clinical Time Series to Learn Optimal Treatment of Acute Dyspnea
SCH:利用临床时间序列学习急性呼吸困难的最佳治疗方法
- 批准号:
10458527 - 财政年份:2019
- 资助金额:
$ 17.27万 - 项目类别:
Data-Driven Identification of the Acute Respiratory Distress Syndrome
数据驱动的急性呼吸窘迫综合征识别
- 批准号:
9292908 - 财政年份:2017
- 资助金额:
$ 17.27万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
2/2: PREcision VENTilation to attenuate Ventilation-Induced Lung Injury (PREVENT VILI)
2/2:精确通气以减轻通气引起的肺损伤(预防 VILI)
- 批准号:
10738959 - 财政年份:2023
- 资助金额:
$ 17.27万 - 项目类别:
Molecular Phenotyping of ARDS, Pneumonia, and Sepsis using Latent Class Analysis and Metagenomic Sequencing
使用潜在类别分析和宏基因组测序对 ARDS、肺炎和脓毒症进行分子表型分析
- 批准号:
10649372 - 财政年份:2023
- 资助金额:
$ 17.27万 - 项目类别:
Development of a predictive model and electronic health record-based probability scoring system and dashboard for postoperative respiratory failure
开发术后呼吸衰竭的预测模型和基于电子健康记录的概率评分系统和仪表板
- 批准号:
10643357 - 财政年份:2023
- 资助金额:
$ 17.27万 - 项目类别:
Preclinical development of a synthetic lung surfactant dry powder aerosol for hypoxemia or acute respiratory distress syndrome patients receiving different modes of ventilation support
用于接受不同通气支持模式的低氧血症或急性呼吸窘迫综合征患者的合成肺表面活性剂干粉气雾剂的临床前开发
- 批准号:
10658610 - 财政年份:2023
- 资助金额:
$ 17.27万 - 项目类别:
Treatment of Inflammatory Complications of Viral Pneumonia
病毒性肺炎炎症并发症的治疗
- 批准号:
10383991 - 财政年份:2022
- 资助金额:
$ 17.27万 - 项目类别: