Statistical Methods and Software for Multivariate Meta-analysis
多元荟萃分析的统计方法和软件
基本信息
- 批准号:10015333
- 负责人:
- 金额:$ 32.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-10 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAreaAssessment toolAttentionBenefits and RisksCardiovascular systemCase StudyComparative Effectiveness ResearchComplexComputer softwareDataData ScienceDevelopmentDiagnosisDiagnosticDiagnostic testsDiseaseDoctor of MedicineDoctor of PhilosophyEvaluationEvidence Based MedicineGoalsGoldHealthcareHeterogeneityIndividualMeasuresMedicalMeta-AnalysisMethodologyMethodsModelingOutcomePatternPerformancePhasePreventionPrevention strategyPrincipal InvestigatorPropertyPublic HealthPublication BiasPublishingRandomizedRandomized Clinical TrialsReceiver Operating CharacteristicsReproducibilityResearchResearch PersonnelScienceScientistSourceStandardizationStatistical Data InterpretationStatistical MethodsStrategic PlanningStratificationTestingUnited States National Institutes of HealthUnited States National Library of MedicineWeightcancer therapyclinical practicecostevidence baseheterogenous dataimprovedinnovationinstrumentinterestnon-complianceopen sourcerapid growthresponsesimulationsystematic reviewuser friendly software
项目摘要
Statistical Methods and Software for Multivariate Meta-analysis
Principal Investigator: Haitao Chu, M.D., Ph.D.
Summary
Comparative effectiveness research (CER) aims to inform health care decisions concerning the benefits and
risks of different prevention strategies, diagnostic instruments and treatment options. A meta-analysis (MA) is a
statistical method that combines results of multiple independent studies to improve statistical power and to
reduce certain biases within individual studies. MA also has the capacity to contrast results from different studies
and identify patterns and sources of disagreement among those results. While many statistical methods for MA
have been proposed and investigated, important research gaps remain. The increasing number of prevention
strategies, assessment instruments and treatment options for a given disease condition, as well as the rapid
escalation in costs, have generated a need to simultaneously compare multiple options in clinical practice using
innovative and rigorous multivariate MA methods.
Following the NIH strategic plan for data science and the National Library of Medicine priority area on
“integration of heterogeneous data types”, in response to PA-18-484, this proposal's overall goal is to develop
cutting-edge statistical methods to enhance the reproducibility, efficiency and generalizability of MA, as well as
to develop easy-to-use software. Specifically, in this proposal, we will: (1) examine the performance of skewness
of the standardized deviates for quantifying publication bias in univariate MA, and develop methods quantifying
publication bias in multivariate MA; (2) develop a Bayesian hierarchical summary receiver operating
characteristic (HSROC) network meta-analysis framework for simultaneously comparing multiple diagnostic
tests; (3) develop a causal inference framework accounting for post-randomization variables in multivariate MA;
and (4) develop open-source, cross-platform, publicly available and easy-to-use software (including R packages
and SAS macros) to implement the proposed MA methods.
We will evaluate the strengths and weaknesses of these proposed methods versus existing MA methods
using many real case studies and extensive simulation studies. The proposed statistical methods will be broadly
applicable to meta-analysis. Completing these four aims will directly benefit the CER evidence base by providing
state-of-the-art methods implemented in user-friendly software including R packages and SAS macros, which
will be made freely available to the public. It will improve public health by facilitating prevention, diagnosis, and
treatment of cancers and cardiovascular, infectious, and other diseases.
多元荟萃分析的统计方法和软件
首席研究员:Haitao Chu,M.D。,博士
概括
比较有效性研究(CER)旨在为医疗保健决定提供有关收益和
不同预防策略,诊断工具和治疗方案的风险。荟萃分析(MA)是
统计方法结合了多项独立研究的结果以提高统计能力和
减少单个研究中的某些偏见。 MA还具有与不同研究的对比结果的能力
并确定这些结果之间分歧的模式和来源。而MA的许多统计方法
已经提出和研究了,仍然存在重要的研究差距。预防数量增加
给定疾病状况的策略,评估工具和治疗方案以及快速
成本升级,已经产生了只需比较临床实践中的多种选择
创新和严格的多元MA方法。
遵循NIH数据科学战略计划和国家医学图书馆优先领域
“异构数据类型的整合”,为了响应PA-18-484,该提案的总体目标是开发
提高MA的可重复性,效率和概括性的尖端统计方法以及
开发易于使用的软件。具体来说,在此提案中,我们将:(1)检查偏度的性能
用于量化单变量MA中出版物偏见的标准化偏差,并开发量化的方法
多元MA的出版偏见; (2)开发贝叶斯分层摘要接收器操作
特征性(HSROC)网络荟萃分析框架,用于简单比较多个诊断
测试; (3)开发一个因多变量MA中随机化变量的因果推理框架;
(4)开发开源,跨平台,公开可用且易于使用的软件(包括R软件包
和SAS宏)以实施提出的MA方法。
我们将评估这些提议的方法与现有MA方法的优势和劣势
使用许多实际案例研究和广泛的仿真研究。提出的统计方法将广泛
适用于荟萃分析。完成这四个目标将直接通过提供CER证据基础。
在用户友好的软件中实施的最新方法,包括R套件和SAS宏,
将免费提供给公众。它将通过促进预防,诊断和
癌症和心血管,传染和其他疾病的治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Haitao Chu其他文献
Haitao Chu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Haitao Chu', 18)}}的其他基金
Statistical Methods and Software for Multivariate Meta-analysis
多元荟萃分析的统计方法和软件
- 批准号:
9815902 - 财政年份:2019
- 资助金额:
$ 32.55万 - 项目类别:
Joint Meta-Regression Methods Accounting for Postrandomization Variables
考虑随机化后变量的联合元回归方法
- 批准号:
9431714 - 财政年份:2017
- 资助金额:
$ 32.55万 - 项目类别:
Aiding Effective Decision Making in Dental Research Using Network Meta-analysis
使用网络元分析帮助牙科研究中的有效决策
- 批准号:
8806160 - 财政年份:2015
- 资助金额:
$ 32.55万 - 项目类别:
Statistical Methods and Software for Multivariate Meta-analysis
多元荟萃分析的统计方法和软件
- 批准号:
9108437 - 财政年份:2015
- 资助金额:
$ 32.55万 - 项目类别:
Bayesian Methods and Software for Patient-Centered Network Meta-Analysis of Binar
用于以患者为中心的二进制网络荟萃分析的贝叶斯方法和软件
- 批准号:
8580883 - 财政年份:2013
- 资助金额:
$ 32.55万 - 项目类别:
Bayesian Methods and Software for Patient-Centered Network Meta-Analysis of Binar
用于以患者为中心的二进制网络荟萃分析的贝叶斯方法和软件
- 批准号:
8661112 - 财政年份:2013
- 资助金额:
$ 32.55万 - 项目类别:
Statistical Methods and Software for Meta-analysis of Diagnostic Tests
诊断测试荟萃分析的统计方法和软件
- 批准号:
8267547 - 财政年份:2011
- 资助金额:
$ 32.55万 - 项目类别:
Statistical Methods and Software for Meta-analysis of Diagnostic Tests
诊断测试荟萃分析的统计方法和软件
- 批准号:
8164771 - 财政年份:2011
- 资助金额:
$ 32.55万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
- 批准号:
10709381 - 财政年份:2023
- 资助金额:
$ 32.55万 - 项目类别:
A Next Generation Data Infrastructure to Understand Disparities across the Life Course
下一代数据基础设施可了解整个生命周期的差异
- 批准号:
10588092 - 财政年份:2023
- 资助金额:
$ 32.55万 - 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 32.55万 - 项目类别:
Preventing Firearm Suicide Deaths Among Black/African American Adults
防止黑人/非裔美国成年人因枪支自杀死亡
- 批准号:
10811498 - 财政年份:2023
- 资助金额:
$ 32.55万 - 项目类别: