Joint Meta-Regression Methods Accounting for Postrandomization Variables
考虑随机化后变量的联合元回归方法
基本信息
- 批准号:9431714
- 负责人:
- 金额:$ 21.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-05 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAlternative TherapiesAttentionAttenuatedBayesian ModelingBenefits and RisksBiochemical MarkersCardiovascular systemClinicalCommunitiesComputer softwareConsensusDataData AnalysesDevelopmentDiseaseDoctor of MedicineDoctor of PhilosophyDropoutDropsEvidence Based MedicineGoalsHealthcareIndividualInvestigationJointsMalignant NeoplasmsManuscriptsMeasuresMeta-AnalysisMethodsModelingOutcome MeasurePatientsPatternPhasePrincipal InvestigatorPropertyPublic HealthPublishingRandomizedRandomized Clinical TrialsReproducibilityResearch PersonnelScientistSelection for TreatmentsSourceStatistical MethodsWithdrawalarmcomparative effectivenesseffectiveness researchevidence baseexperiencefollow-upimprovedinnovationinterestnon-complianceopen sourcepillprematureprimary outcomerapid growthsimulationsoftware developmentsystematic reviewtheoriestreatment effecttreatment planningtreatment responseuser friendly software
项目摘要
Joint Meta-Regression Methods Accounting for Postrandomization Variables
Principal Investigator: Haitao Chu, M.D., Ph.D.
Summary
The rapid growth of interest in comparative effectiveness research and evidence-based medicine has led to
dramatically increased attention to systematic reviews and meta-analyses, which synthesize and contrast multi-
ple randomized clinical trials. T
o examine the impact of covariates on study-specific treatment effects, meta-
regression methods are available for conventional meta-analysis comparing two treatments and for network
meta-analysis simultaneously comparing multiple treatments
.
While there is broad consensus on methods for
examining study-level covariates which are similar across a study's treatment arms because of randomization
it is much more challenging to adjust for postrandomization variables, which are expected to differ between
treatment arms within a study. Examples include differential noncompliance, measured as the proportion of
premature treatment discontinuation or drop out, loss to follow-up, or change to an alternative therapy. To the
best of our knowledge, existing meta-regression methods only focus on
the impact of study-level covariates,
which are assumed to be fixed, while postrandomization variables are generally considered random. Thus, ex-
isting meta-regression methods cannot account for postrandomization variables.
Because postrandomization variables such as differential noncompliance can induce bias in estimating the
effect of treatment plans, in responding to PA-16-161 this proposal's overall goal is to develop cutting-edge joint
models to account for postrandomization variables in meta-analysis, and to integrate them into publicly available,
easy-to-use software to enhance the reproducibility, validity, and generalizability of meta-analyses. Specifically,
we will apply Bayesian hierarchical models in these three specific aims: 1) develop joint meta-regression meth-
ods to adjust for postrandomization variables in conventional meta-analysis; 2) develop multivariate joint meta-
regression methods to adjust for postrandomization variables in network meta-analysis; and 3) objectively eval-
uate the proposed methods and develop an open-source R package.
We will evaluate the strengths and weaknesses of these methods compared to existing meta-analysis meth-
ods, through real data applications and extensive simulations. The proposed statistical methods will be broadly
applicable to many meta-analyses. Completing these aims will substantially advance comparative effectiveness
research and evidence-based medicine through innovative meta-analysis methods. It will improve public health
by facilitating treatment selection for various cancers and for cardiovascular, infectious, and other diseases.
关节元回归方法考虑了授异构化变量
首席研究员:Haitao Chu,M.D。,博士
概括
比较有效性研究和循证医学的兴趣快速增长导致
大大增加了对系统评价和荟萃分析的关注,它们综合和对比多
PLE随机临床试验。
o检查协变量对特异性治疗效应的影响
回归方法可用于比较两种处理和网络的常规荟萃分析
荟萃分析仅比较多种治疗
。
虽然对方法有广泛的共识
研究级别的协变量,由于随机化而在研究的治疗组中相似
调整后变量的挑战要多得多,预期之间会有所不同
一项研究中的治疗臂。示例包括差异不合规,以衡量的比例来衡量
过早的治疗停药或退学,损失进行随访或更改为替代疗法。到
最好的知识,现有的元回归方法仅关注
研究级协变量的影响,
假定这些是固定的,而后施的变量通常被认为是随机的。那就去了
iSATIT元回归方法无法解释Postrandomization变量。
因为诸如差异不符合差异之类的后变量可能会引起偏见
治疗计划的影响,在回应PA-16-161时,该提案的总体目标是开发最先进的联合
在荟萃分析中解释跨汇聚变量的模型,并将它们整合到公开可用的情况下,
易于使用的软件,可增强荟萃分析的可重复性,有效性和概括性。具体来说,
我们将在这三个特定目的中应用贝叶斯分层模型:1)发展关节元回归甲基
在常规荟萃分析中调整后分析变量的OD; 2)发展多元关节元
回归方法以调整网络荟萃分析中的后体变量; 3)客观评估 -
UATE提出的方法并开发一个开源R软件包。
与现有的荟萃分析相比,我们将评估这些方法的优势和劣势
ODS,通过实际数据应用程序和广泛的模拟。提出的统计方法将广泛
适用于许多荟萃分析。完成这些目标将大大提高比较效率
通过创新的荟萃分析方法研究和循证医学。它将改善公共卫生
通过支持各种癌症以及心血管,感染和其他疾病的治疗选择。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Haitao Chu其他文献
Haitao Chu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Haitao Chu', 18)}}的其他基金
Statistical Methods and Software for Multivariate Meta-analysis
多元荟萃分析的统计方法和软件
- 批准号:
10015333 - 财政年份:2019
- 资助金额:
$ 21.14万 - 项目类别:
Statistical Methods and Software for Multivariate Meta-analysis
多元荟萃分析的统计方法和软件
- 批准号:
9815902 - 财政年份:2019
- 资助金额:
$ 21.14万 - 项目类别:
Aiding Effective Decision Making in Dental Research Using Network Meta-analysis
使用网络元分析帮助牙科研究中的有效决策
- 批准号:
8806160 - 财政年份:2015
- 资助金额:
$ 21.14万 - 项目类别:
Statistical Methods and Software for Multivariate Meta-analysis
多元荟萃分析的统计方法和软件
- 批准号:
9108437 - 财政年份:2015
- 资助金额:
$ 21.14万 - 项目类别:
Bayesian Methods and Software for Patient-Centered Network Meta-Analysis of Binar
用于以患者为中心的二进制网络荟萃分析的贝叶斯方法和软件
- 批准号:
8580883 - 财政年份:2013
- 资助金额:
$ 21.14万 - 项目类别:
Bayesian Methods and Software for Patient-Centered Network Meta-Analysis of Binar
用于以患者为中心的二进制网络荟萃分析的贝叶斯方法和软件
- 批准号:
8661112 - 财政年份:2013
- 资助金额:
$ 21.14万 - 项目类别:
Statistical Methods and Software for Meta-analysis of Diagnostic Tests
诊断测试荟萃分析的统计方法和软件
- 批准号:
8267547 - 财政年份:2011
- 资助金额:
$ 21.14万 - 项目类别:
Statistical Methods and Software for Meta-analysis of Diagnostic Tests
诊断测试荟萃分析的统计方法和软件
- 批准号:
8164771 - 财政年份:2011
- 资助金额:
$ 21.14万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Using Augmented Reality illusion therapy to develop a non-opioid chronic pain digital treatment
使用增强现实幻觉疗法开发非阿片类慢性疼痛数字治疗
- 批准号:
10152726 - 财政年份:2021
- 资助金额:
$ 21.14万 - 项目类别:
Using Augmented Reality illusion therapy to develop a non-opioid chronic pain digital treatment
使用增强现实幻觉疗法开发非阿片类慢性疼痛数字治疗
- 批准号:
10541646 - 财政年份:2021
- 资助金额:
$ 21.14万 - 项目类别:
RadxTools for assessing tumor treatment response on imaging
用于评估影像学肿瘤治疗反应的 RadxTools
- 批准号:
10477947 - 财政年份:2020
- 资助金额:
$ 21.14万 - 项目类别:
RadxTools for assessing tumor treatment response on imaging
用于评估影像学肿瘤治疗反应的 RadxTools
- 批准号:
10206077 - 财政年份:2020
- 资助金额:
$ 21.14万 - 项目类别: