Bayesian Methods and Software for Patient-Centered Network Meta-Analysis of Binar
用于以患者为中心的二进制网络荟萃分析的贝叶斯方法和软件
基本信息
- 批准号:8661112
- 负责人:
- 金额:$ 21.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-05-15 至 2016-07-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): Comparative effectiveness research (CER) relies fundamentally on accurate assessment of treatment efficacy and safety that, ideally, can be tailored to specific patients. The growing number of treatment options for a given condition, as well as the rapid escalation in their costs, has generated an increasing need for scientifically rigorous simultaneous comparisons of multiple treatments in clinical practice. Also called mixed or multiple treatments meta-analysis, network meta-analysis (NMA) expands the scope of a conventional pairwise meta-analysis by simultaneously analyzing both direct comparisons of interventions within randomized controlled trials and indirect comparisons across trials .... Compared to traditional meta-analysis of just two treatments, NMA presents many additional statistical challenges. In particular, a typical randomized trial compares only a few (typically tw) treatments, which intrinsically creates a large amount of missing data when, say, a dozen treatments must be compared simultaneously, since the outcomes for treatments not studied in a particular trial are missing by design. Currently available statistical methods, which are based on treatment contrasts, focus only on relative treatment effect estimates and have other serious limitations. The overall goal of this proposal is to develop cutting-edge statistical methods, and
to integrate them into publicly available, easy-to-use software, to enhance patient-centered NMA. Specifically, we will develop multivariate Bayesian hierarchical models for binary outcomes from the perspective of missing data methods with the following three specific aims: 1) to extend our preliminary work on estimating patient-centered parameters (e.g., absolute risk, risk difference and relative risk) with a single endpoint to allow non-ignorable missingness; 2) to
simultaneously model multiple endpoints (e.g. outcomes for efficacy and safety) with proper consideration of non-ignorable missingness; and 3) to incorporate individual patient characteristics. In addition, we propose new methods to measure and detect inconsistency between the direct and indirect evidence, and to borrow strength cautiously from less reliable data sources. We propose to perform empirical assessment of the strengths and weaknesses of these methods through many real data applications and simulations. Completion of the three aims will substantially advance CER analytical methods for comparing multiple treatments across multiple endpoints and tailored to patient characteristics.
描述(由申请人提供):比较有效性研究(CER)从根本上依赖于对治疗功效和安全性的准确评估,理想情况下,可以针对特定患者量身定制。给定条件的治疗选择的数量越来越多,以及成本的快速升级,对临床实践中多种治疗的科学同时比较越来越需要进行严格的同时比较。网络荟萃分析(NMA)也称为混合或多种治疗方法,通过同时分析随机对照试验中的干预措施的两种直接比较,并在试验中进行间接比较。特别是,一项典型的随机试验仅比较了几种(通常是TW)治疗方法,当时必须同时比较十几个治疗方法,因为设计在特定试验中缺少了未研究的治疗结果。目前基于治疗对比的可用统计方法仅着眼于相对治疗效果估计,并具有其他严重的局限性。 该提案的总体目标是开发最先进的统计方法,并
将它们集成到公共可用的易于使用的软件中,以增强以患者为中心的NMA。具体而言,我们将从缺少数据方法的角度开发多元贝叶斯分层模型,以使用以下三个特定目的:1)扩展我们在估计以患者为中心的参数(例如,绝对风险,风险差异和相对风险)的初步工作,并允许单个端点缺少不可签名的缺失; 2)到
同时对多个终点(例如,有效性和安全性的结果)进行建模,并正确考虑了不可忽视的丢失。 3)纳入个人患者特征。此外,我们提出了新的方法来衡量和检测直接证据和间接证据之间的不一致,并谨慎地从较不可靠的数据源中借用强度。 我们建议通过许多真实的数据应用和模拟对这些方法的优势和劣势进行经验评估。这三个目标的完成将大大提高CER分析方法,以比较多个终点的多种治疗方法,并根据患者特征量身定制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Haitao Chu的其他基金
Statistical Methods and Software for Multivariate Meta-analysis
多元荟萃分析的统计方法和软件
- 批准号:1001533310015333
- 财政年份:2019
- 资助金额:$ 21.65万$ 21.65万
- 项目类别:
Statistical Methods and Software for Multivariate Meta-analysis
多元荟萃分析的统计方法和软件
- 批准号:98159029815902
- 财政年份:2019
- 资助金额:$ 21.65万$ 21.65万
- 项目类别:
Joint Meta-Regression Methods Accounting for Postrandomization Variables
考虑随机化后变量的联合元回归方法
- 批准号:94317149431714
- 财政年份:2017
- 资助金额:$ 21.65万$ 21.65万
- 项目类别:
Aiding Effective Decision Making in Dental Research Using Network Meta-analysis
使用网络元分析帮助牙科研究中的有效决策
- 批准号:88061608806160
- 财政年份:2015
- 资助金额:$ 21.65万$ 21.65万
- 项目类别:
Statistical Methods and Software for Multivariate Meta-analysis
多元荟萃分析的统计方法和软件
- 批准号:91084379108437
- 财政年份:2015
- 资助金额:$ 21.65万$ 21.65万
- 项目类别:
Bayesian Methods and Software for Patient-Centered Network Meta-Analysis of Binar
用于以患者为中心的二进制网络荟萃分析的贝叶斯方法和软件
- 批准号:85808838580883
- 财政年份:2013
- 资助金额:$ 21.65万$ 21.65万
- 项目类别:
Statistical Methods and Software for Meta-analysis of Diagnostic Tests
诊断测试荟萃分析的统计方法和软件
- 批准号:82675478267547
- 财政年份:2011
- 资助金额:$ 21.65万$ 21.65万
- 项目类别:
Statistical Methods and Software for Meta-analysis of Diagnostic Tests
诊断测试荟萃分析的统计方法和软件
- 批准号:81647718164771
- 财政年份:2011
- 资助金额:$ 21.65万$ 21.65万
- 项目类别:
相似海外基金
Addressing Gaps in Language Access Services through a Patient-Centered Decision-Support Tool
通过以患者为中心的决策支持工具解决语言获取服务中的差距
- 批准号:1069903010699030
- 财政年份:2023
- 资助金额:$ 21.65万$ 21.65万
- 项目类别:
Development and implementation of a digital sleep intervention for preschoolers in foster care
为寄养中的学龄前儿童开发和实施数字睡眠干预
- 批准号:1072430410724304
- 财政年份:2023
- 资助金额:$ 21.65万$ 21.65万
- 项目类别:
Transovarial transmission of yersinia pestis in fleas
跳蚤中鼠疫耶尔森氏菌的跨卵巢传播
- 批准号:1072753410727534
- 财政年份:2023
- 资助金额:$ 21.65万$ 21.65万
- 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:1070783010707830
- 财政年份:2023
- 资助金额:$ 21.65万$ 21.65万
- 项目类别:
Neuromodulation for impulsivity and suicidality in Veterans with mildtraumatic brain injury and common co-occurring mental health conditions
神经调节对患有轻度脑损伤和常见并发心理健康状况的退伍军人的冲动和自杀倾向
- 批准号:1064056710640567
- 财政年份:2023
- 资助金额:$ 21.65万$ 21.65万
- 项目类别: