Mechanisms of intestinal stem cell differentiation and plasticity.
肠道干细胞分化和可塑性的机制。
基本信息
- 批准号:9788430
- 负责人:
- 金额:$ 56.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-20 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffinityBindingBinding SitesCell LineCellsChIP-on-chipChIP-seqChromatinColumnar CellComplexDown-RegulationETS DomainEnvironmentEpithelial CellsGFI1 geneGenesGenetic TranscriptionGrowth FactorHumanIn VitroInfectionInjuryIntestinesLGR5 geneLeadMeasuresMediatingMethodologyMultiprotein ComplexesMusMutationNatural regenerationNormal CellNuclearOrganoidsPaneth CellsProcessPublicationsPublishingRNARadiationRecoveryRegulationResolutionRoleSAM DomainSecretory CellSignal TransductionSpecific qualifier valueStem cellsTCF Transcription FactorTertiary Protein StructureTestingTherapeutic InterventionTranscriptional ActivationWNT Signaling Pathwayantimicrobial peptidebasebeta cateninchemotherapychromatin immunoprecipitationgut microbiomemutantnoveloverexpressionpreventprogenitorprotein complexself-renewalside effectsingle-cell RNA sequencingstem cell differentiationstem cell niche
项目摘要
Paneth cells (PCs), which reside intercalated among the active crypt base columnar (CBC) intestinal stem cells
(ISCs), serve several important homeostatic functions in the gut, including i) regulation of the intestinal
microbiome by secretion of antimicrobial peptides and ii) serving as niche cells to provide growth factors and
signals to adjacent CBC cells. Recent evidence has suggested that secretory cells (fated to become PCs) can
revert to a CBC state to repopulate the intestine following injury. CBC cells are highly dependent on canonical
Wnt signaling to drive proliferation and self-renewal. PCs likewise exist in a high-Wnt environment, and show
robust nuclear β-catenin indicative of canonical Wnt activation--but they do not proliferate. This raises the
question: how does potent canonical Wnt activation produce such different results in adjacent epithelial cells?
Our previously published results identified a transcriptional cascade (Atoh1-Gfi1-SPDEF) that specifies
intestinal secretory cells including PCs. Our recent publications indicate that SPDEF (SAM Pointed Domain
ETS Factor), which is normally expressed in PCs but not CBCs, can repress β-catenin chromatin binding and
transcriptional activation of select target genes. These results support our overarching hypothesis that SPDEF
shifts the chromatin targets of β-catenin to regulate stem cell vs. Paneth cell fate. We will test this
hypothesis in three aims. Aim 1: Define the landscape of β-catenin and SPDEF targets in CBCs vs.
Paneth cells. We will use RNA- and Chromatin Immunoprecipitation- (ChIP-) seq to define functional
targets of β-catenin and SPDEF in Lgr5+ CBC stem cells and PCs. This aim will give us the first compendium of
cell-specific targets of SPDEF and β-catenin in the intestine, and test whether SPDEF is necessary and
sufficient to shift the chromatin targets of β-catenin in the stem cell niche. Aim 2: Determine the
mechanism by which SPDEF changes transcription of β-catenin targets. We will probe the physical
interaction between SPDEF and β-catenin protein complexes, as well as the changes to transcriptional
machinery regulating CBC vs. PC genes. This aim will rigorously test our mechanistic hypothesis about how
SPDEF alters β-catenin targets, and is essential for any rational targeting of this process for therapeutic
intervention. Aim 3: Test the role for SPDEF:β-catenin interaction in regeneration of damaged
crypts. Here, we will use single-cell RNA-seq (scRNA-seq) and ChIP to characterize injury-induced reversion,
and to determine how β-catenin chromatin binding changes as part of the reversion process. Next, we will
define the requirement and sufficiency for downregulation of SPDEF to achieve reversion of secretory cells into
stem cells following injury. Finally, we will use a novel in vitro injury-reversion-regeneration methodology in
organoids to test the role for SPDEF in regulating β-catenin directed CBC recovery. This aim will provide
single-cell resolution to define the mechanism of cellular plasticity within the crypt and the role of SPDEF and
β-catenin/WNT signaling in regeneration.
Paneth细胞(PC),该细胞位于活性加密柱柱(CBC)肠道干细胞之间
(ISC),在肠道中提供几个重要的稳态功能,包括i)调节肠
微生物组通过分泌抗菌胡椒体和ii)作为利基细胞提供生长因子和
信号与邻近的CBC细胞。最近的证据表明,秘密细胞(投产为PC)可以
恢复到CBC状态,以在受伤后重新填充肠。 CBC细胞高度依赖于规范
Wnt信号传导以驱动增殖和自我更新。 PC同样存在于高温环境中,并显示
强大的核β-catenin指示了典型的Wnt激活 - 但它们不会增殖。这提高了
问题:潜在的规范Wnt激活如何在相邻的上皮细胞中产生如此不同的结果?
我们先前发表的结果确定了指定的转录级联(ATOH1-GFI1-SPDEF)
包括PC的肠道秘书细胞。我们最近的出版物表明SPDEF(Sam尖头领域
通常在PC中而不是CBC表示的ETS因子)可以抑制β-catenin染色质结合和
选定靶基因的转录激活。这些结果支持我们的总体假设,即SPDEF
移动β-catenin的染色质靶标,以调节干细胞与Paneth细胞命运。我们将测试这个
三个目标的假设。目标1:定义CBCS与CBCS中β-catenin和SPDEF靶标的景观。
Paneth细胞。我们将使用RNA和染色质免疫沉淀 - (芯片)SEQ来定义功能
LGR5+ CBC干细胞和PC中的β-catenin和SPDEF的靶标。这个目标将为我们提供第一个汇编
肠中SPDEF和β-catenin的细胞特异性靶标,并测试SPDEF是否需要
AIM 2:确定干细胞小众中β-catenin的染色质靶标。
SPDEF改变β-catenin靶标的转录机制。我们将探测物理
SPDEF和β-catenin蛋白复合物之间的相互作用,以及转录的变化
机械调节CBC与PC基因。这个目标将严格检验我们关于如何
SPDEF改变了β-catenin的靶标,对于此过程的任何合理靶向治疗至关重要
干涉。 AIM 3:测试SPDEF的作用:β-catenin的相互作用在受损的再生中
地下室。在这里,我们将使用单细胞RNA-Seq(SCRNA-SEQ)和芯片来表征损伤引起的反向,
并确定β-catenin染色质结合如何变化作为反向过程的一部分。接下来,我们会的
定义对SPDEF下调的要求和充分性,以使秘书细胞反向
受伤后干细胞。最后,我们将使用一种新颖的体外损伤逆转 - 再生方法
类器官测试SPDEF在调节β-catenin定向CBC恢复中的作用。这个目标将提供
单细胞分辨率来定义地下室内细胞可塑性的机理以及SPDEF和
再生中的β-catenin/wnt信号传导。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NOAH Freeman SHROYER其他文献
NOAH Freeman SHROYER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NOAH Freeman SHROYER', 18)}}的其他基金
Mechanisms of telomere-induced disease: Role of intestinal malabsorption, barrier dysfunction and dsybiosis.
端粒诱发疾病的机制:肠道吸收不良、屏障功能障碍和失调的作用。
- 批准号:
10454085 - 财政年份:2022
- 资助金额:
$ 56.09万 - 项目类别:
Mechanisms of telomere-induced disease: Role of intestinal malabsorption, barrier dysfunction and dsybiosis.
端粒诱发疾病的机制:肠道吸收不良、屏障功能障碍和失调的作用。
- 批准号:
10632001 - 财政年份:2022
- 资助金额:
$ 56.09万 - 项目类别:
The Gastrointestinal Experimental Model Systems (GEMS) Core
胃肠实验模型系统 (GEMS) 核心
- 批准号:
10117232 - 财政年份:2020
- 资助金额:
$ 56.09万 - 项目类别:
KLF5 regulation of intestinal development and stem cell homeostasis.
KLF5 调节肠道发育和干细胞稳态。
- 批准号:
8486426 - 财政年份:2011
- 资助金额:
$ 56.09万 - 项目类别:
KLF5 regulation of intestinal development and stem cell homeostasis
KLF5 对肠道发育和干细胞稳态的调节
- 批准号:
8905197 - 财政年份:2011
- 资助金额:
$ 56.09万 - 项目类别:
KLF5 regulation of intestinal development and stem cell homeostasis.
KLF5 调节肠道发育和干细胞稳态。
- 批准号:
8294532 - 财政年份:2011
- 资助金额:
$ 56.09万 - 项目类别:
KLF5 regulation of intestinal development and stem cell homeostasis.
KLF5 调节肠道发育和干细胞稳态。
- 批准号:
8162496 - 财政年份:2011
- 资助金额:
$ 56.09万 - 项目类别:
相似国自然基金
结合态抗生素在水产品加工过程中的消解机制与产物毒性解析
- 批准号:32302247
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ABHD6与AMPA受体结合位点的鉴定及该位点在AMPA受体转运和功能调控中的作用研究
- 批准号:32300794
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
α-突触核蛋白与脂肪酸结合蛋白FABP3相互作用维持自身低聚体形态的机制研究
- 批准号:82301632
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于荧光共振能量转移机理构建多肽荧光探针用于可视化Zn2+结合SQSTM1/p62调节自噬在前列腺癌去势耐受中的作用机制
- 批准号:82303568
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
手性氢键供体与阴离子结合催化乙烯基醚的立体选择性阳离子聚合
- 批准号:22301279
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 56.09万 - 项目类别:
Decoding the functional pleiotropy of IL-20Rβ ligands in inflammation and tumorigenesis
解码 IL-20Rβ 配体在炎症和肿瘤发生中的功能多效性
- 批准号:
10350447 - 财政年份:2023
- 资助金额:
$ 56.09万 - 项目类别:
eCD4-mediated control of SIV infection in the brain
eCD4 介导的脑部 SIV 感染控制
- 批准号:
10698442 - 财政年份:2023
- 资助金额:
$ 56.09万 - 项目类别:
Disrupting Dogma: Investigating LPS Biosynthesis Inhibition as an Alternative Mechanism of Action of Aminoglycoside Antibiotics
颠覆教条:研究 LPS 生物合成抑制作为氨基糖苷类抗生素的替代作用机制
- 批准号:
10653587 - 财政年份:2023
- 资助金额:
$ 56.09万 - 项目类别:
Genetic adjuvants to elicit neutralizing antibodies against HIV
基因佐剂可引发抗艾滋病毒中和抗体
- 批准号:
10491642 - 财政年份:2023
- 资助金额:
$ 56.09万 - 项目类别: