Administrative supplement - Equipment
行政补充-设备
基本信息
- 批准号:10378986
- 负责人:
- 金额:$ 3.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-20 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAddressAdministrative SupplementAutomobile DrivingBehaviorBiological Response Modifier TherapyBiologyBlood VesselsCardiovascular DiseasesCell membraneCellsConfocal MicroscopyContractsCustomDNADevelopmentDiseaseEndothelial CellsEndotheliumEquipmentEventExtravasationGene DeliveryIn VitroIntravenousKnowledgeLifeMalignant NeoplasmsMeasuresMechanicsMediatingMethodsMicrobubblesMicrocirculationMolecularNucleic AcidsOpticsPathologicPathway interactionsPermeabilityPhysicsPhysiologyPropertyProteinsResearchSavingsSignal TransductionSiteSmall Interfering RNASpeedTechnologyTestingTherapeuticTimeTranslationsUltrasonic TransducerUltrasonographyexperimental studygene therapyimage guidedin vivoinsightmacromoleculemultidisciplinarynucleic acid deliverynucleic acid-based therapeuticsreal-time imagesresponsesoundtargeted deliveryvibration
项目摘要
Increasing knowledge of the molecular underpinnings of disease is driving a powerful imperative to deliver
agents, such as nucleic acids, to silence expression of pathologic proteins for life-saving treatment of heretofore
hopeless illnesses. Although there are promising developments in strategies to deliver cell membrane
impermeant nucleic acids, such as siRNA, to disease-causing cells, a safe and efficient method for targeted
delivery of these agents has remained elusive. A significant hurdle for gene therapies using vascular delivery is
to circumvent the endothelial barrier. We have been developing a unique technology using intravenously injected
nucleic acid-loaded microbubbles (MB) which are triggered to cavitate (expand and contract) by ultrasound (US),
causing transient permeabilization of the adjacent cell membrane and delivery of the therapeutic carried by the
MBs. The potential of this site-specific, non-invasive delivery method is extraordinary, more so because the MBs
and US transducer also provide capability for simultaneous real time image-guided navigation of therapy. Despite
its promise, the mechanisms underlying the efficacy of ultrasound-triggered MB cavitation (UTMC) as a delivery
platform are poorly understood. Without a sound knowledge of the fundamental mechanisms by which safe and
effective biotherapeutic delivery is effected by UTMC, its ultimate bedside translation is impossible. We
hypothesize that MBs cavitating in the microcirculation impart non-lethal mechanical perturbations on endothelial
cells, leading to signaling events that culminate in endothelial barrier hyperpermeability. We propose in vitro
studies to systematically interrogate mechanistic pathways, followed by in vivo experiments to investigate UTMC
endothelial barrier effects in real time, addressing three Specific Aims: (1) Determine the mechanisms by
which UTMC increases endothelial barrier permeability. We will use transwells coated with endothelial cells
and manipulate candidate pathways to test the hypothesis that UTMC-induced Ca2+ influx increases endothelial
permeability. We will optically measure attendant cellular events using multicolor confocal microscopy, thus
correlating barrier function to cell response;; (2) Determine the relationship between in vivo MB cavitation
behaviors and transendothelial transport of macromolecules (siRNA). We will use a custom ultra-high
speed camera to visualize in vivo US-MB vibrations in the microcirculation to test the hypothesis that MB
cavitation causes quantifiable mechanical events, then derive physical principles governing UTMC-mediated
hyperpermeability;; (3): Determine extravasation pathways and cellular fate of siRNA-loaded MBs during
UTMC in vivo. We will use intravital high-speed multicolor confocal microscopy in cremaster microcirculation to
visualize endothelial barrier properties and siRNA-loaded MB fate. Our multi-disciplinary team unites
physics/acoustics with biology/physiology to derive insights into fundamental physical and cellular mechanisms
underlying UTMC-facilitated gene delivery. Ultimately, our research will define a rational basis for optimization
of this remarkable technology and accelerate the translation of nucleic acid therapeutics to the bedside.
对疾病分子基础的越来越多的了解正在推动有力的当务之急
诸如核酸之类的剂,以使病理蛋白的表达沉默以挽救生命的治疗
绝望的疾病。尽管在传递细胞膜的策略中有希望发展
无形的核酸,例如siRNA,致病性细胞,是一种安全有效的靶向方法
这些药物的递送仍然弹性。使用血管递送的基因疗法的重大障碍是
绕过内皮屏障。我们一直在使用静脉注射的独特技术开发独特的技术
核酸负载的微泡(MB),这些微泡(MB)是通过超声(US),
引起相邻细胞膜的瞬时通透性,并通过
MBS。这种特定地点的非侵入性传递方法的潜力是非凡的,因为MBS
美国传感器还提供了同时实时图像引导的治疗导航的能力。尽管
它的承诺是超声触发的MB空化(UTMC)的效率的基础机制
平台了解不足。没有明显的了解安全和安全的基本机制
有效的生物治疗递送是有效的,UTMC是不可能的,其最终的床边翻译是不可能的。我们
假设MB在微循环中脱落的MB会在内皮上施加非致命的机械扰动
细胞,导致信号事件,导致内皮屏障高度过敏性。我们提出了体外
对系统询问机械途径的研究,然后进行体内实验,以研究UTMC
实时内皮屏障效应,解决三个具体目的:(1)确定机制
UTMC增加了内皮屏障的渗透性。我们将使用带有内皮细胞涂层的Transwells
并操纵候选途径,以测试UTMC诱导的Ca2+涌入增加内皮的假设
渗透性。我们将使用多色共聚焦显微镜光学地测量随之而来的细胞事件,因此
将屏障功能与细胞反应相关; (2)确定体内MB空化之间的关系
大分子的行为和跨内皮转运(siRNA)。我们将使用自定义的超高
速度摄像头在微循环中可视化体内US-MB振动,以测试MB的假设
空化导致可量化的机械事件,然后得出有关UTMC介导的物理原理
超透明度; (3):确定siRNA负载MBS的外渗途径和细胞命运
UTMC在体内。我们将在Cremaster Microcirulation中使用内内室高速共聚焦显微镜
可视化内皮屏障特性和siRNA负载的MB命运。我们的多学科团队单位
具有生物学/生理学的物理/声学,以洞悉基本物理和细胞机制
潜在的UTMC促进基因递送。最终,我们的研究将定义优化的合理基础
在这项非凡的技术中,并加速了核酸疗法对床边的翻译。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Complex Highways on the Translational Roadmap for Therapeutic Ultrasound-Targeted Microbubble Cavitation: Where Are We Now?
超声靶向微泡空化治疗转化路线图上的复杂高速公路:我们现在在哪里?
- DOI:10.1016/j.jcmg.2019.08.010
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Villanueva,FlordelizaS;Chen,Xucai
- 通讯作者:Chen,Xucai
A multicellular brain spheroid model for studying the mechanisms and bioeffects of ultrasound-enhanced drug penetration beyond the blood‒brain barrier.
- DOI:10.1038/s41598-023-50203-3
- 发表时间:2024-01-22
- 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
Ultrafast Microscopy Imaging of Acoustic Cluster Therapy Bubbles: Activation and Oscillation.
声簇治疗气泡的超快显微成像:激活和振荡。
- DOI:10.1016/j.ultrasmedbio.2022.05.009
- 发表时间:2022
- 期刊:
- 影响因子:2.9
- 作者:vanWamel,Annemieke;Mühlenpfordt,Melina;Hansen,Rune;Healey,Andrew;Villanueva,FlordelizaS;Kotopoulis,Spiros;Davies,CatharinadeLange;Chen,Xucai
- 通讯作者:Chen,Xucai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Flordeliza S Villanueva其他文献
1118-79 Drag reduction by polymer infusion: A new mechanism to enhance microcirculatory perfusion for the treatment of ischemia
- DOI:
10.1016/s0735-1097(04)91227-2 - 发表时间:
2004-03-03 - 期刊:
- 影响因子:
- 作者:
John J Pacella;Erxiong Lu;Joan Gretton;David Fischer;Marina V Kameneva;Flordeliza S Villanueva - 通讯作者:
Flordeliza S Villanueva
Flordeliza S Villanueva的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Flordeliza S Villanueva', 18)}}的其他基金
Biological and Physical Mechanisms of ultrasound/microbubble-mediated therapeutic gene delivery across the endothelial barrier
超声/微泡介导的治疗基因跨内皮屏障传递的生物和物理机制
- 批准号:
10220968 - 财政年份:2018
- 资助金额:
$ 3.57万 - 项目类别:
Biological and Physical Mechanisms of ultrasound/microbubble-mediated therapeutic gene delivery across the endothelial barrier
超声/微泡介导的治疗基因跨内皮屏障传递的生物和物理机制
- 批准号:
9980415 - 财政年份:2018
- 资助金额:
$ 3.57万 - 项目类别:
Training Program in Imaging Sciences in Translational Cardiovascular Research
转化心血管研究成像科学培训项目
- 批准号:
10382469 - 财政年份:2016
- 资助金额:
$ 3.57万 - 项目类别:
Training Program in Imaging Sciences in Translational Cardiovascular Research
转化心血管研究成像科学培训项目
- 批准号:
10269077 - 财政年份:2016
- 资助金额:
$ 3.57万 - 项目类别:
Training Program in Imaging Sciences in Translational Cardiovascular Research
转化心血管研究成像科学培训项目
- 批准号:
10633063 - 财政年份:2016
- 资助金额:
$ 3.57万 - 项目类别:
Training Program in Imaging Sciences in Translational Cardiovascular Research
转化心血管研究成像科学培训项目
- 批准号:
9264011 - 财政年份:2016
- 资助金额:
$ 3.57万 - 项目类别:
Ultrasound-activated microbubbles for targeted siRNA delivery to tumor
用于将 siRNA 靶向递送到肿瘤的超声激活微泡
- 批准号:
8664844 - 财政年份:2012
- 资助金额:
$ 3.57万 - 项目类别:
Targeted theranostic microbubble vectors for transcription factor decoy delivery
用于转录因子诱饵递送的靶向治疗诊断微泡载体
- 批准号:
8528523 - 财政年份:2012
- 资助金额:
$ 3.57万 - 项目类别:
Ultrasound-activated microbubbles for targeted siRNA delivery to tumor
用于将 siRNA 靶向递送到肿瘤的超声激活微泡
- 批准号:
8501449 - 财政年份:2012
- 资助金额:
$ 3.57万 - 项目类别:
Ultrasound-activated microbubbles for targeted siRNA delivery to tumor
用于将 siRNA 靶向递送到肿瘤的超声激活微泡
- 批准号:
8857130 - 财政年份:2012
- 资助金额:
$ 3.57万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The University of Miami AIDS Research Center on Mental Health and HIV/AIDS - Center for HIV & Research in Mental Health (CHARM)Research Core - EIS
迈阿密大学艾滋病心理健康和艾滋病毒/艾滋病研究中心 - Center for HIV
- 批准号:
10686546 - 财政年份:2023
- 资助金额:
$ 3.57万 - 项目类别:
Assessing the real-world impact of a low nicotine product standard for smoked tobacco in New Zealand
评估新西兰低尼古丁产品标准对吸食烟草的现实影响
- 批准号:
10665851 - 财政年份:2023
- 资助金额:
$ 3.57万 - 项目类别:
Supplement for Cloud Computing: Alcohol Use Disorder Treatment Simulation
云计算补充:酒精使用障碍治疗模拟
- 批准号:
10827563 - 财政年份:2023
- 资助金额:
$ 3.57万 - 项目类别:
A Longitudinal Qualitative Study of Fentanyl-Stimulant Polysubstance Use Among People Experiencing Homelessness (Administrative supplement)
无家可归者使用芬太尼兴奋剂多物质的纵向定性研究(行政补充)
- 批准号:
10841820 - 财政年份:2023
- 资助金额:
$ 3.57万 - 项目类别:
Programs for the Training and Advancement of the Next GENeration of Native Researchers in Genetics, Ethics and Society
下一代本土遗传学、伦理学和社会研究人员的培训和提升计划
- 批准号:
10841760 - 财政年份:2023
- 资助金额:
$ 3.57万 - 项目类别: