Auto-Scope Software-Automated Otoscopy to Diagnose Ear Pathology
Auto-Scope 软件 - 用于诊断耳部病理的自动耳镜检查
基本信息
- 批准号:9790958
- 负责人:
- 金额:$ 19.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-21 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcademyAcuteAddressAdverse eventAffectAlgorithmsAmericanAntibioticsAppearanceAwarenessBacterial Antibiotic ResistanceChildChildhoodCholesteatomaClinicClinicalClipComputer Vision SystemsComputer softwareComputer-Assisted Image AnalysisComputersCystDatabasesDevicesDiagnosisDiagnosticDiseaseEarEar DiseasesFinancial HardshipGoalsGuidelinesHairHandHealthHealth Care CostsHumanImageImage AnalysisImage EnhancementInterobserver VariabilityLabelLanguage DelaysLanguage DevelopmentLightingLiquid substanceMachine LearningMethodsMissionNational Institute on Deafness and Other Communication DisordersNoseNurse PractitionersOperative Surgical ProceduresOralOtitis MediaOtitis Media with EffusionOtolaryngologistOtoscopesOtoscopyPathologyPatientsPediatricsPerforationPerformancePharmaceutical PreparationsPharyngeal structurePhysician AssistantsPhysiciansPrimary Care PhysicianPrimary Health CarePublic HealthRadiology SpecialtyReportingResearchResolutionRetrievalSideSkinSocietiesSurgical PathologySystemTestingTrainingTubeTympanic membraneUnited States National Institutes of HealthWaxesWorkaccurate diagnosisacute infectionbasecentral databaseclinical decision supportcognitive developmentcomputerizeddiagnostic accuracydigital imagingdigital video recordingeffusionexperiencehearing impairmentimprovedmiddle earnovelnovel strategiesovertreatmentpersonalized therapeuticprimary care settingprototypesoftware development
项目摘要
ABSTRACT
Acute infections of the middle ear (acute otitis media - AOM), are the most commonly treated childhood
disease. Treatment is fueled by concern for complications and effects on children's cognitive and language
development. The financial burden of AOM is estimated at more than $5 billion per year. Because AOM is so
common, a major societal problem is the over-diagnosis and over-treatment of this disease, as a result of two
factors: First, accurately diagnosing AOM is difficult, even for experienced primary care or ear, nose, and throat
(ENT) physicians. Second, with a growing shortage of primary care physicians in the US, more Nurse
Practitioners and Physician Assistants serve as first-line clinicians in primary care settings, but lack extensive
training in otoscopy (i.e. clinical examination of the eardrum). Consequently, practitioners often err on the side
of making a diagnosis of AOM and prescribing oral antibiotics. Over 8 million unnecessary antibiotics are
prescribed annually, contributing to the rise of antibiotic-resistant bacteria, and creating the largest number of
pediatric medication-related adverse events. Many children with inaccurate diagnoses of AOM are referred to
ENTs for surgical placement of ear tubes, and up to 70% of these cases are not indicated.
Diagnosing AOM still depends on clinician subjectivity, based on a brief glimpse of the eardrum. This
diagnostic subjectivity creates a critical barrier to progress in society's goal of decreasing healthcare costs
and reducing over-diagnosis and over-treatment of AOM. According to the American Academy of Pediatrics in
2013, devices are needed to assist in more accurate, consistent, and objective diagnosis of AOM. A simple
and objective method of analyzing an image of a patient's ear to diagnose or rule out AOM would drastically
reduce over-treatment. This project will fill that gap, by developing computer-assisted image analysis (CAIA)
software that provides objective information to a clinician by analyzing eardrum images collected using
currently available hardware. Based on previous work in applying similar methods to improve clinician
performance in radiology and surgical pathology, our overarching hypothesis is that the incremental
implementation of enhanced images, automated identification of abnormalities, and retrieval of similar cases
will result in improved clinician diagnostic accuracy.
In our preliminary work, we developed software, called Auto-Scope, which labels eardrums as “normal” versus
“abnormal.” In this study, we propose two Specific Aims to improve diagnostic performance:
Specific Aim #1: Create an enhanced composite image of the eardrum.
Specific Aim #2: Use machine learning approaches for clinical decision support.
抽象的
中耳急性感染(急性中耳炎 - AOM)是儿童时期最常治疗的疾病
对并发症以及对儿童认知和语言影响的担忧推动了治疗。
AOM 每年的财务负担估计超过 50 亿美元。
常见的一个主要社会问题是对该疾病的过度诊断和过度治疗,这是由于以下两个原因造成的:
因素:首先,准确诊断 AOM 很困难,即使对于经验丰富的初级保健人员或耳鼻喉科人员来说也是如此
其次,随着美国初级保健医生的日益短缺,需要更多的护士。
执业医师和医师助理是初级保健机构的一线服务人员,但缺乏广泛的支持
耳镜检查培训(即耳膜的临床检查)。
诊断 AOM 并开出超过 800 万种不必要的抗生素。
每年开处方,导致抗生素耐药性细菌的增加,并创造了最大数量的抗生素耐药性细菌。
许多 AOM 诊断不准确的儿童被转介给儿科药物相关的不良事件。
耳鼻喉科用于手术放置耳管,其中高达 70% 的病例没有指征。
诊断 AOM 仍然取决于临床医生的主观性,基于对耳膜的简短观察。
诊断主观性对社会降低医疗成本目标的进展构成了关键障碍
根据美国儿科学会的说法,减少 AOM 的过度诊断和过度治疗。
2013 年,需要设备来协助对 AOM 进行更准确、一致和客观的简单诊断。
分析患者耳朵图像来诊断或排除 AOM 的客观方法将是戏剧性的
该项目将通过开发计算机辅助图像分析(CAIA)来填补这一空白。
通过分析使用收集的鼓膜图像向临床医生提供客观信息的软件
基于当前可用的硬件,应用类似的方法来改进临床医生。
在放射学和外科病理学的表现中,我们的总体假设是增量
实施增强图像、自动识别异常、检索相似病例
将提高临床医生的诊断准确性。
在我们的前期工作中,我们开发了名为 Auto-Scope 的软件,该软件将耳膜标记为“正常”与“正常”
“异常。”在这项研究中,我们提出了两个提高诊断性能的具体目标:
具体目标#1:创建增强的鼓膜合成图像。
具体目标#2:使用机器学习方法进行临床决策支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Metin Nafi Gurcan其他文献
Metin Nafi Gurcan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Metin Nafi Gurcan', 18)}}的其他基金
Computer-assisted diagnosis of ear pathologies by combining digital otoscopy with complementary data using machine learning
通过使用机器学习将数字耳镜与补充数据相结合来计算机辅助诊断耳部病变
- 批准号:
10564534 - 财政年份:2023
- 资助金额:
$ 19.91万 - 项目类别:
Efficient and cost-effective breast cancer risk stratification using whole slide histopathology images
使用全玻片组织病理学图像进行高效且经济的乳腺癌风险分层
- 批准号:
10649978 - 财政年份:2023
- 资助金额:
$ 19.91万 - 项目类别:
Culturally Augmented Learning In Biomedical Informatics Research (CALIBIR) Program
生物医学信息学研究中的文化增强学习 (CALIBIR) 计划
- 批准号:
10631379 - 财政年份:2022
- 资助金额:
$ 19.91万 - 项目类别:
Analytics & Machine-learning for Maternal-health Interventions (AMMI): A Cross-CTSA Collaboration
分析
- 批准号:
10670448 - 财政年份:2022
- 资助金额:
$ 19.91万 - 项目类别:
Culturally Augmented Learning In Biomedical Informatics Research (CALIBIR) Program
生物医学信息学研究中的文化增强学习 (CALIBIR) 计划
- 批准号:
10701848 - 财政年份:2022
- 资助金额:
$ 19.91万 - 项目类别:
Pathology Image Informatics Platform for visualization, analysis and management
用于可视化、分析和管理的病理图像信息学平台
- 批准号:
9341177 - 财政年份:2015
- 资助金额:
$ 19.91万 - 项目类别:
Computer-assisted Grading and Risk Stratification of Follicular Lymphoma
滤泡性淋巴瘤的计算机辅助分级和风险分层
- 批准号:
8215904 - 财政年份:2009
- 资助金额:
$ 19.91万 - 项目类别:
Computer-based assessment of tumor microenvironment (TME) in Follicular Lymphoma
基于计算机的滤泡性淋巴瘤肿瘤微环境 (TME) 评估
- 批准号:
9611415 - 财政年份:2009
- 资助金额:
$ 19.91万 - 项目类别:
OAMiner: Integrative Knowledge Anchored Hypothesis Discovery
OMiner:综合知识锚定假设发现
- 批准号:
7828221 - 财政年份:2009
- 资助金额:
$ 19.91万 - 项目类别:
Computer-assisted Grading and Risk Stratification of Follicular Lymphoma
滤泡性淋巴瘤的计算机辅助分级和风险分层
- 批准号:
8024533 - 财政年份:2009
- 资助金额:
$ 19.91万 - 项目类别:
相似国自然基金
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活性脂质Arlm-1介导的自噬流阻滞在儿童T细胞急性淋巴细胞白血病化疗耐药逆转中的作用机制研究
- 批准号:82300182
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
FORUM ON MEDICAL AND PUBLIC HEALTH PREPAREDNESS FOR DISASTERS AND EMERGENCIES AND ACTION COLLABORATIVE ON DISASTERS/PUBLIC HEALTH EMERGENCY RESEARCH
灾害和紧急情况医疗和公共卫生防备论坛以及灾害/公共卫生紧急情况研究行动合作
- 批准号:
10937101 - 财政年份:2023
- 资助金额:
$ 19.91万 - 项目类别:
Identifying the Causes of the Stagnation in National U.S. Cardiovascular Disease Mortality
查明美国全国心血管疾病死亡率停滞不前的原因
- 批准号:
10585800 - 财政年份:2023
- 资助金额:
$ 19.91万 - 项目类别:
Organizational resilience: A novel strategy for improving ICU outcomes
组织弹性:改善 ICU 治疗结果的新策略
- 批准号:
10586383 - 财政年份:2023
- 资助金额:
$ 19.91万 - 项目类别:
A Translational Research Approach to Healthy Technology Usage in Language-Minority Families with Young Children
有幼儿的语言少数群体家庭健康技术使用的转化研究方法
- 批准号:
10822222 - 财政年份:2023
- 资助金额:
$ 19.91万 - 项目类别: