Efficient and cost-effective breast cancer risk stratification using whole slide histopathology images
使用全玻片组织病理学图像进行高效且经济的乳腺癌风险分层
基本信息
- 批准号:10649978
- 负责人:
- 金额:$ 19.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-06 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AgeAttentionBiological AssayBiological MarkersBiopsyBreast Cancer PatientBreast Cancer Risk FactorBreast Cancer therapyCancer PrognosisCategoriesCell NucleusCellsClassificationClinicalClinical ResearchClinical TrialsConsumptionDataDeveloping CountriesDiagnosisDiagnosticDiseaseDuct (organ) structureERBB2 geneEffectivenessEnsureEpitheliumEstrogen ReceptorsEstrogen receptor positiveEstrogensGene ExpressionGenesHealthHematoxylin and Eosin Staining MethodHistologicHistologyHistopathologyHumanImageImage AnalysisInternetInterobserver VariabilityLearningMalignant NeoplasmsMeasuresMethodsMissionModelingNatureOutcomePatientsPerformancePlayPopulationPremature MenopauseProgesteroneProgesterone ReceptorsPrognosisPublic HealthRecurrenceRecurrence ScoreRegional AnatomyResearchResource-limited settingResourcesReverse Transcriptase Polymerase Chain ReactionRiskSlideStainsStratificationTimeTissuesTrainingTumor TissueTumor stageUnited StatesUnited States National Institutes of HealthValidationWomanbreast imagingchemotherapycohortcostcost effectivedesigndetection methoddiagnostic accuracyerbB-2 Receptorhigh riskhormone receptor-positiveimaging biomarkerimprovedlarge datasetsmalignant breast neoplasmmortalitynovel strategiesoncotypeoptimal treatmentsoverexpressionpatient stratificationpersonalized carepreventprogesterone receptor positivereceptorrisk stratificationrural areaside effecttooltumorweb-based toolwhole slide imaging
项目摘要
Efficient and cost-effective breast cancer risk stratification using whole-slide histopathology
images
Breast cancer prognosis depends highly on receptor status, as optimal treatment depends on
the presence or absence of overexpression of estrogen, progesterone, or HER-2/neu receptors.
To prevent over-treating patients with chemotherapy, it is crucial to quantify the risk of
recurrence for estrogen receptor (ER) positive (ER+), HER2 negative (HER2-) breast cancer. A
common assessment method to meet this need is the Oncotype DX (ODX) Recurrence Score.
Unfortunately, ODX and similar gene assays are expensive, time-consuming, and tissue
destructive. As an alternative, we propose estimating the ODX recurrence score using routine,
ubiquitous, and inexpensive hematoxylin and eosin (H&E) staining of biopsies. There are other
efforts to predict ODX recurrence risk from H&E. These automated methods detect histological
primitives (e.g., nuclei) often in specific, also automatically detected, anatomical regions (e.g.,
ducts, tubules, lumen, epithelium, and stroma). Classification is performed into two or three risk
categories, often collapsing two categories into one. The performance of these models is
promising but still modest. One way to improve the performance of the models is to train on
larger datasets; however, annotating larger datasets is challenging. Here, we propose an
automated method to predict ODX recurrence risk without annotations. If successful, this
method would have a wide range of applications, including but not limited to the availability of an
inexpensive, web-based tool to predict ODX in developing countries or rural areas with internet
access where standard Oncotype Dx assay would be cost-prohibitive or take too long to obtain.
Furthermore, our method would find use in clinical research where valuable tumor tissue could
be saved by obtaining correlative research data based on standard H&E-stained slides.
有效且具有成本效益
图像
乳腺癌预后高度取决于受体状态,因为最佳治疗取决于
雌激素,孕酮或HER-2/NEU受体的过表达的存在或不存在。
为了防止过度治疗的化学疗法患者,量化的风险至关重要
雌激素受体(ER)阳性(ER+),HER2阴性(HER2-)乳腺癌的复发。一个
满足这种需求的常见评估方法是Oncotype DX(ODX)复发评分。
不幸的是,ODX和类似基因测定很昂贵,耗时和组织
破坏性。作为替代方案,我们建议使用例程估算ODX复发评分,
活检的无处不在,廉价的苏木精和曙红(H&E)染色。还有其他
预测H&E的ODX复发风险的努力。这些自动化方法检测组织学
原语(例如核)通常以特定的(也自动检测到)的解剖区域(例如,
管道,小管,管腔,上皮和基质)。分类分为两个或三个风险
类别通常将两个类别崩溃为一类。这些模型的性能是
有希望但仍然适中。提高模型性能的一种方法是训练
较大的数据集;但是,注释较大的数据集具有挑战性。在这里,我们建议
自动化方法可以预测无注释而无需注释。如果成功,这
方法将具有广泛的应用,包括但不限于可用性
廉价,基于网络的工具,可预测发展中国家或农村地区的ODX
访问标准的ONCOTYPE DX分析将过于良好或花费太长时间才能获得。
此外,我们的方法可以在临床研究中找到有价值的肿瘤组织
可以通过基于标准H&E染色幻灯片获得相关研究数据来保存。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Metin Nafi Gurcan其他文献
Metin Nafi Gurcan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Metin Nafi Gurcan', 18)}}的其他基金
Computer-assisted diagnosis of ear pathologies by combining digital otoscopy with complementary data using machine learning
通过使用机器学习将数字耳镜与补充数据相结合来计算机辅助诊断耳部病变
- 批准号:
10564534 - 财政年份:2023
- 资助金额:
$ 19.09万 - 项目类别:
Culturally Augmented Learning In Biomedical Informatics Research (CALIBIR) Program
生物医学信息学研究中的文化增强学习 (CALIBIR) 计划
- 批准号:
10631379 - 财政年份:2022
- 资助金额:
$ 19.09万 - 项目类别:
Analytics & Machine-learning for Maternal-health Interventions (AMMI): A Cross-CTSA Collaboration
分析
- 批准号:
10670448 - 财政年份:2022
- 资助金额:
$ 19.09万 - 项目类别:
Culturally Augmented Learning In Biomedical Informatics Research (CALIBIR) Program
生物医学信息学研究中的文化增强学习 (CALIBIR) 计划
- 批准号:
10701848 - 财政年份:2022
- 资助金额:
$ 19.09万 - 项目类别:
Auto-Scope Software-Automated Otoscopy to Diagnose Ear Pathology
Auto-Scope 软件 - 用于诊断耳部病理的自动耳镜检查
- 批准号:
9790958 - 财政年份:2018
- 资助金额:
$ 19.09万 - 项目类别:
Pathology Image Informatics Platform for visualization, analysis and management
用于可视化、分析和管理的病理图像信息学平台
- 批准号:
9341177 - 财政年份:2015
- 资助金额:
$ 19.09万 - 项目类别:
Computer-assisted Grading and Risk Stratification of Follicular Lymphoma
滤泡性淋巴瘤的计算机辅助分级和风险分层
- 批准号:
8215904 - 财政年份:2009
- 资助金额:
$ 19.09万 - 项目类别:
Computer-based assessment of tumor microenvironment (TME) in Follicular Lymphoma
基于计算机的滤泡性淋巴瘤肿瘤微环境 (TME) 评估
- 批准号:
9611415 - 财政年份:2009
- 资助金额:
$ 19.09万 - 项目类别:
OAMiner: Integrative Knowledge Anchored Hypothesis Discovery
OMiner:综合知识锚定假设发现
- 批准号:
7828221 - 财政年份:2009
- 资助金额:
$ 19.09万 - 项目类别:
Computer-assisted Grading and Risk Stratification of Follicular Lymphoma
滤泡性淋巴瘤的计算机辅助分级和风险分层
- 批准号:
8024533 - 财政年份:2009
- 资助金额:
$ 19.09万 - 项目类别:
相似国自然基金
人机共驾模式下驾驶人监管注意力弱化-恢复规律与调控机理
- 批准号:52302425
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
逆全球化下跨国企业动态能力形成的微观机理研究:高管注意力配置视角
- 批准号:72302220
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
注意力感知驱动的车载多模态传感器在线协同校正
- 批准号:42301468
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于两阶段注意力深度学习方法的系统性金融风险测度与预警研究
- 批准号:72301101
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Behavioral and physiological measurements of hearing in mouse models of Alzheimer's Disease
阿尔茨海默病小鼠模型听力的行为和生理测量
- 批准号:
10647340 - 财政年份:2023
- 资助金额:
$ 19.09万 - 项目类别:
Impact of TBI and Cognitive Decline on Alzheimer's Disease Brain-Derived Exosome Cargo
TBI 和认知能力下降对阿尔茨海默病脑源性外泌体货物的影响
- 批准号:
10662883 - 财政年份:2023
- 资助金额:
$ 19.09万 - 项目类别:
Drug repurposing for Alzheimer’s disease-related inflammation caused by a TBI
药物再利用,治疗 TBI 引起的阿尔茨海默病相关炎症
- 批准号:
10590132 - 财政年份:2023
- 资助金额:
$ 19.09万 - 项目类别:
Couples Motivational Interviewing to reduce drug use and HIV risk in vulnerable male couples
夫妻动机访谈,以减少弱势男性夫妇的吸毒和艾滋病毒风险
- 批准号:
10757544 - 财政年份:2023
- 资助金额:
$ 19.09万 - 项目类别:
Transforming Research And Clinical Knowledge in Geriatric Traumatic Brain Injury (TRACK-GERI)
转变老年创伤性脑损伤的研究和临床知识 (TRACK-GERI)
- 批准号:
10741270 - 财政年份:2023
- 资助金额:
$ 19.09万 - 项目类别: