Human Microphysiology Systems Disease Model of Type 2 Diabetes Starting with Liver and pancreatic Islets
从肝和胰岛开始的 2 型糖尿病的人体微生理学系统疾病模型
基本信息
- 批准号:9669312
- 负责人:
- 金额:$ 117.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-20 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:Adipose tissueAdultAmericanAnimal ModelAutoimmune ProcessBeta CellBiological MarkersBiological ModelsBiosensorBlood VesselsCell LineCellsCollaborationsCoupledCouplingDataDatabasesDevelopmentDiabetes MellitusDiseaseDisease ProgressionDisease modelEndothelial CellsEngineeringFastingFluorescenceFunctional disorderGenesHepatocyteHumanHyperglycemiaIn VitroIndividualInflammatoryInsulin ResistanceInsulin-Dependent Diabetes MellitusInvestigationIslet CellIslets of LangerhansKnock-inLinkLiverMetabolicMethodsMicroRNAsMicrofluidicsModelingMorbidity - disease rateMutationNon-Insulin-Dependent Diabetes MellitusOrganOrgan ModelPathogenesisPatient-Focused OutcomesPatientsPhasePhysiologicalPhysiologyPopulationPrecision therapeuticsPrediabetes syndromeProtocols documentationReagentRoleSkeletal MuscleSourceStrategic PlanningSystemTechnologyTestingTherapeuticTimeTissuesTransgenic Miceadipokinesbasebiomarker developmentbiomarker discoveryclinically relevantcytokinedata sharingdrug testingeconomic costhepatic acinus structurehuman modelimprovedinduced pluripotent stem cellinsulin secretionknock-downmalemicrophysiology systemmigrationpotential biomarkerpreventsuccess
项目摘要
Human Microphysiology Systems Disease Model of Type 2 Diabetes Starting with Liver and Pancreatic Islets
Over 30 million Americans have diabetes, constituting about 9.4% of the adult population. An additional 84
million adult Americans have pre-diabetes, both amounting to an economic cost of $322 billion annually. The
underlying cause of all forms of diabetes is an inadequate insulin secretion relative to the metabolic needs.
While there is an absolute loss of beta cells in type 1 diabetes (T1D) due to an autoimmune destruction, the
pathogenesis of type 2 diabetes (T2D) is much more heterogeneous with preceding insulin resistance being
present in many tissues, principally the liver, β-cells in pancreatic islets, white adipose tissue and skeletal
muscle. The insulin resistance and the metabolic consequences vary between tissues and more importantly,
vary enormously in the population. Furthermore, evidence from human and model organism studies has
demonstrated the importance of organ crosstalk including the role of myokines, adipokines, hepatokines and
cytokines from inflammatory cells, as well as the exosomal transfer of miRNA in the pathophysiology of
diabetes. Interspecies differences between human and model organism physiology limits the translatability of
many findings (e.g. from transgenic mouse studies), such as those from beta cells. All of these make it
necessary to devise in vitro systems to study human physiology that allow organ crosstalk interrogation.
Understanding the pathophysiology of T2D in a human microphysiology system (MPS) will help understand the
progression of the disease, identify biomarkers and develop therapeutic strategies that can prevent, mitigate or
reverse the morbidity associated with diabetes and improve patient outcomes. Our proposal focuses on two of
the critical organs: liver and pancreatic islets. We will first demonstrate the relevant physiology and
pathophysiology in the vascularized liver acinus MPS (vLAMPS) and the vascularized pancreatic islets MPS
(vPANIS) using primary human cells/tissue (Aim 1). The full power of MPS disease models will utilize patient-
derived, adult iPSCs of all of the key cells in the organs and include real-time fluorescent biosensors of key
physiological parameters and conditional knock-downs of selected genes. Our proposal has a strategic plan to
optimize the migration from primary human cells in the UG3 phase to iPSC-derived cells in the later stages of
the UH3 phase, including collaborative integration of relevant progress in the iPSC field (Aim 2 and 4). The
initial use of human primary, cell-based MPS’s will define the optimal normal and disease metrics in each MPS
model to begin the investigation of the disease and to serve as a functional reference to test the physiological
relevance of the iPSC-derived models. We will functionally and then physically couple the vLAMPS to the
vPANIS to test the hypothesis that factors from the insulin resistant liver can potentiate beta cell dysfunction in
the context of hyperglycemia and hyperinsulemia (Aims 3 and 4). We will use our microphysiology database as
a platform for sharing data, protocols, reagents, the vLAMPS and vPANIS models and results (Aim 5).
从肝和胰岛开始的 2 型糖尿病的人体微生理学系统疾病模型
超过 3000 万美国人患有糖尿病,约占成年人口的 9.4%,另有 84 人患有糖尿病。
100 亿美国成年人患有糖尿病前期,每年造成的经济损失达 3220 亿美元。
所有形式糖尿病的根本原因是胰岛素分泌相对于代谢需求不足。
虽然 1 型糖尿病 (T1D) 中由于自身免疫破坏而导致 β 细胞绝对损失,但
2 型糖尿病 (T2D) 的发病机制更加异质,之前的胰岛素抵抗是
存在于许多组织中,主要是肝脏、胰岛中的 β 细胞、白色脂肪组织和骨骼
肌肉的胰岛素抵抗和代谢后果因组织而异,更重要的是,
此外,来自人类和模式生物研究的证据表明。
证明了器官串扰的重要性,包括肌因子、脂肪因子、肝因子和
来自炎症细胞的细胞因子,以及病理生理学中 miRNA 的外泌体转移
人类和模式生物生理学之间的种间差异限制了糖尿病的可翻译性。
许多研究结果(例如来自转基因小鼠的研究),例如来自β细胞的研究结果,所有这些都使其成为可能。
有必要设计体外系统来研究允许器官串扰询问的人体生理学。
了解人体微生理学系统 (MPS) 中 T2D 的病理生理学将有助于理解
疾病的生物标志物进展和治疗制定可以预防、减轻或
我们的建议集中于以下两个方面:扭转与糖尿病相关的发病率并改善患者的治疗结果。
关键器官:肝和胰岛,我们将首先演示相关的生理学和功能。
血管化肝腺泡 MPS (vLAMPS) 和血管化胰岛 MPS 的病理生理学
(vPANIS) 使用原代人类细胞/组织(目标 1) MPS 疾病模型的全部功能将利用患者-
源自器官中所有关键细胞的成体 iPSC,并包括关键细胞的实时荧光生物传感器
我们的提案有一个战略计划:
优化从 UG3 期的原代人类细胞到后期阶段的 iPSC 衍生细胞的迁移
UH3阶段,包括iPSC领域相关进展的协作整合(目标2和4)。
人类初级、基于细胞的 MPS 的初始使用将定义每个 MPS 中的最佳正常和疾病指标
模型开始疾病的研究并作为测试生理功能的功能参考
我们将在功能上和物理上将 vLAMPS 连接到 iPSC 衍生模型。
vPANIS 检验来自胰岛素抵抗肝脏的因素可以增强 β 细胞功能障碍的假设
我们将使用我们的微生理学数据库作为高血糖和高胰岛素血症的背景。
一个用于共享数据、协议、试剂、vLAMPS 和 vPANIS 模型和结果的平台(目标 5)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
D. Lansing Taylor其他文献
Imaging cytometry by multiparameter fluorescence.
通过多参数荧光成像细胞计数。
- DOI:
10.1002/cyto.990120702 - 发表时间:
1991 - 期刊:
- 影响因子:0
- 作者:
William Galbraith;Marc C. E. Wagner;Jean Chao;Mohammed Abaza;L. Ernst;M A Nederlof;Robert J. Hartsock;D. Lansing Taylor;A. S. Waggoner - 通讯作者:
A. S. Waggoner
D. Lansing Taylor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('D. Lansing Taylor', 18)}}的其他基金
Human Microphysiology Systems Disease Model of Type 2 Diabetes Starting with Liver and pancreatic Islets
从肝和胰岛开始的 2 型糖尿病的人体微生理学系统疾病模型
- 批准号:
10216387 - 财政年份:2018
- 资助金额:
$ 117.26万 - 项目类别:
Applying a Human Liver Microphysiology System to Develop Therapeutic Strategies for Non-Alcoholic Fatty Liver Disease (NAFLD)
应用人类肝脏微生理学系统制定非酒精性脂肪性肝病 (NAFLD) 的治疗策略
- 批准号:
9752312 - 财政年份:2018
- 资助金额:
$ 117.26万 - 项目类别:
Human Microphysiology Systems Disease Model of Type 2 Diabetes Starting with Liver and pancreatic Islets
从肝和胰岛开始的 2 型糖尿病的人体微生理学系统疾病模型
- 批准号:
10228791 - 财政年份:2018
- 资助金额:
$ 117.26万 - 项目类别:
Human Microphysiology Systems Disease Model of Type 2 Diabetes Starting with Liver and pancreatic Islets
从肝和胰岛开始的 2 型糖尿病的人体微生理学系统疾病模型
- 批准号:
10462531 - 财政年份:2018
- 资助金额:
$ 117.26万 - 项目类别:
Human Microphysiology Systems Disease Model of Type 2 Diabetes Starting with Liver and pancreatic Islets
从肝和胰岛开始的 2 型糖尿病的人体微生理学系统疾病模型
- 批准号:
10225651 - 财政年份:2018
- 资助金额:
$ 117.26万 - 项目类别:
Applying a Human Liver Microphysiology System to Develop Therapeutic Strategies for Non-Alcoholic Fatty Liver Disease (NAFLD)
应用人类肝脏微生理学系统制定非酒精性脂肪性肝病 (NAFLD) 的治疗策略
- 批准号:
9920137 - 财政年份:2018
- 资助金额:
$ 117.26万 - 项目类别:
InCell 6000 High Content Instrument for Cellular Systems Biology Program
InCell 6000 高内涵细胞系统生物学仪器
- 批准号:
8332956 - 财政年份:2013
- 资助金额:
$ 117.26万 - 项目类别:
A 3D biomimetic liver sinusoid construct for predicting physiology and toxicity
用于预测生理学和毒性的 3D 仿生肝正弦结构
- 批准号:
9104252 - 财政年份:2012
- 资助金额:
$ 117.26万 - 项目类别:
A 3D biomimetic liver sinusoid construct for predicting physiology and toxicity
用于预测生理学和毒性的 3D 仿生肝正弦结构
- 批准号:
8516131 - 财政年份:2012
- 资助金额:
$ 117.26万 - 项目类别:
Collaborations to Extend the Microphysiology Database for Multiple Organ Models,
合作扩展多器官模型的微生理学数据库,
- 批准号:
8667080 - 财政年份:2012
- 资助金额:
$ 117.26万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Opportunistic Atherosclerotic Cardiovascular Disease Risk Estimation at Abdominal CTs with Robust and Unbiased Deep Learning
通过稳健且公正的深度学习进行腹部 CT 机会性动脉粥样硬化性心血管疾病风险评估
- 批准号:
10636536 - 财政年份:2023
- 资助金额:
$ 117.26万 - 项目类别:
Metformin IN Asthma for overweight and obese individuals (MINA)
二甲双胍用于超重和肥胖人群的哮喘治疗 (MINA)
- 批准号:
10740950 - 财政年份:2023
- 资助金额:
$ 117.26万 - 项目类别:
Lipocalin-2, a mitokine that mediates white to brown fat crosstalk
Lipocalin-2,一种介导白色至棕色脂肪串扰的丝分裂素
- 批准号:
10645353 - 财政年份:2023
- 资助金额:
$ 117.26万 - 项目类别:
Quantitative characterization of the liver-pancreas axis in diabetes via multiparametric magnetic resonance elastography
通过多参数磁共振弹性成像定量表征糖尿病肝胰轴
- 批准号:
10718333 - 财政年份:2023
- 资助金额:
$ 117.26万 - 项目类别:
Creating diverse communities in support of diabetes and metabolism research
创建多元化社区以支持糖尿病和代谢研究
- 批准号:
10794432 - 财政年份:2023
- 资助金额:
$ 117.26万 - 项目类别: