A 3D biomimetic liver sinusoid construct for predicting physiology and toxicity
用于预测生理学和毒性的 3D 仿生肝正弦结构
基本信息
- 批准号:8516131
- 负责人:
- 金额:$ 104.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-24 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccountingAddressAlbuminsAmmoniaAnimal ModelAnimal TestingBile AcidsBiochemicalBioinformaticsBiological AssayBiomimeticsBiosensorBloodBlood Coagulation FactorCell FractionCell RespirationCell SurvivalCell physiologyCellsChemical IndustryCholesterolClinicalClinical DataClinical TrialsCoculture TechniquesCytochrome P450DataDatabasesDiscontinuous CapillaryDisease modelDistantDrug InteractionsDrug Metabolic DetoxicationDrug TargetingDrug usageEndothelial CellsEngineeringFailureFibrinogenFluorescent ProbesGene ExpressionGluconeogenesisGlucoseGlutathioneGlycolysisGoalsHepatobiliaryHepatocyteHepatotoxicityHeterogeneityHomeostasisHumanHuman bodyIn VitroKupffer CellsLifeLiverMass Spectrum AnalysisMetabolicMetabolic BiotransformationMicrofluidic MicrochipsMicrofluidicsModelingMonitorOrganOrgan ModelOxygenPatternPerformancePharmaceutical PreparationsPharmacologic SubstancePhasePhase I Clinical TrialsPhysiologyPlayPopulationReadingRoleSafetySelf CareSentinelSeriesStagingSystemTimeTissue ViabilityToxic effectToxinUreaValidationViralWorkXenobioticsbasecell growthcell typecellular transductionclinical efficacydesigndrug candidatedrug developmentdrug discoverydrug efficacydrug metabolismefficacy testingexposed human populationfatty acid oxidationhepatic acinus structureimprovedin vitro Assayin vitro Modelin vivoliver functionpredictive modelingpublic health relevanceresponsesafety testingstellate celltool
项目摘要
DESCRIPTION (provided by applicant): A 3D biomimetic liver sinusoid construct for predicting physiology and toxicity Approximately 90% of drug candidates entering Phase 1 clinical trials fail, and one of the main reasons for drug failure is unexpected toxicity. The liver plays a centra role in the human body, contributing to homeostasis and important functions such as biotransformation and metabolism of drugs. The liver is also the most common target for drug-induced toxicity. Existing in vitro models and in vivo animal models have limited predictive power for human liver toxicity. The goal of this project is to construct a microfluidic liver modul which mimics the functions and responses of the human liver, with readouts designed to indicate both normal liver function and toxic responses. This human liver model is expected to be the essential elimination organ for modeling human exposure, provide improved predictions of drug induced liver toxicity, and also serve as a disease model for drug discovery. Our approach will be to develop a 3D microfluidic system with human hepatocyte, kupffer, stellate and endothelial cells, to mimic the liver acinus - the smallest functional unit of the liver. A uniue feature of the model will be the oxygenation of the media, and the establishment of an oxygen gradient, which is believed to account for important metabolic, gene expression and functional heterogeneity of the hepatocytes in the sinusoidal space of normal human liver. Hepatocytes in the oxygen rich zone are efficient in oxidative metabolism, fatty acid oxidation, gluconeogenesis, bile acid extraction, ammonia detoxification to urea and glutathione-conjugation while hepatocytes in the oxygen depleted zone are efficient in glycolysis, liponeogenesis and Cytochrome P-450 biotransformation. Another unique feature of the model will be the incorporation of 'sentinel' biosensor cells, a small fraction of cells with engineered biosensors that indicate changes in cellular functions. When combined with other fluorescent probes, standard biochemical and mass spectroscopy readouts, the model will provide a real-time High Content Analysis (HCA) profile to monitor organ function and response. The selection and validation of readouts and performance of the model will be evaluated based on a panel of reference drugs with available clinical data. To facilitate that comparison, a database of drugs with clinical data, and data from other in vitro and in vivo studies will be constructed. The ultimate goal of this project is to develop a microfluidic model of human liver function that will integrate with a series of other human organ modules, to create a microphysiology platform that reproduces human clinical trial results and provides improved predictivity of exposure, safety and efficacy for drug development. The liver plays a central role in human drug interactions, both within the liver and in other organs, as a result of drug metabolism. The performance of the liver module is central to the performance of the microphysiology platform. We believe the design proposed here will optimally recapitulate human liver function on that platform.
描述(申请人提供):用于预测生理学和毒性的3D仿生肝窦结构大约90%进入1期临床试验的候选药物失败,而药物失败的主要原因之一是意想不到的毒性。肝脏在人体中起着核心作用,有助于体内平衡和重要功能,例如生物转化和药物代谢。肝脏也是药物引起的毒性最常见的目标。现有的体外模型和体内动物模型对人类肝脏毒性的预测能力有限。该项目的目标是构建一个模拟人类肝脏功能和反应的微流体肝脏模块,其读数旨在指示正常肝功能和毒性反应。该人类肝脏模型预计将成为模拟人类暴露的重要消除器官,提供对药物引起的肝毒性的改进预测,并且还可作为药物发现的疾病模型。 我们的方法是开发一种包含人类肝细胞、枯否细胞、星状细胞和内皮细胞的 3D 微流体系统,以模拟肝腺泡(肝脏的最小功能单位)。该模型的一个独特特征是介质的氧合以及氧梯度的建立,这被认为解释了正常人肝脏正弦空间中肝细胞的重要代谢、基因表达和功能异质性。富氧区的肝细胞在氧化代谢、脂肪酸氧化、糖异生、胆汁酸提取、氨解毒为尿素和谷胱甘肽结合方面有效,而缺氧区的肝细胞在糖酵解、脂肪异生和细胞色素 P-450 生物转化方面有效。该模型的另一个独特特征是纳入“哨兵”生物传感器细胞,这是一小部分带有工程生物传感器的细胞,可指示细胞功能的变化。当与其他荧光探针、标准生化和质谱读数结合使用时,该模型将提供实时高内涵分析 (HCA) 曲线,以监测器官功能和反应。读数的选择和验证以及模型的性能将根据一组具有可用临床数据的参考药物进行评估。为了便于比较,将构建一个包含临床数据以及其他体外和体内研究数据的药物数据库。 该项目的最终目标是开发人类肝功能的微流体模型,该模型将与一系列其他人体器官模块集成,创建一个微生理学平台,重现人体临床试验结果,并提供更好的暴露预测性、安全性和有效性。药物开发。由于药物代谢,肝脏在肝脏内和其他器官的人类药物相互作用中发挥着核心作用。肝脏模块的性能对于微生理学平台的性能至关重要。我们相信这里提出的设计将在该平台上最佳地再现人类肝功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
D. Lansing Taylor其他文献
Imaging cytometry by multiparameter fluorescence.
通过多参数荧光成像细胞计数。
- DOI:
10.1002/cyto.990120702 - 发表时间:
1991 - 期刊:
- 影响因子:0
- 作者:
William Galbraith;Marc C. E. Wagner;Jean Chao;Mohammed Abaza;L. Ernst;M A Nederlof;Robert J. Hartsock;D. Lansing Taylor;A. S. Waggoner - 通讯作者:
A. S. Waggoner
D. Lansing Taylor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('D. Lansing Taylor', 18)}}的其他基金
Human Microphysiology Systems Disease Model of Type 2 Diabetes Starting with Liver and pancreatic Islets
从肝和胰岛开始的 2 型糖尿病的人体微生理学系统疾病模型
- 批准号:
10216387 - 财政年份:2018
- 资助金额:
$ 104.63万 - 项目类别:
Applying a Human Liver Microphysiology System to Develop Therapeutic Strategies for Non-Alcoholic Fatty Liver Disease (NAFLD)
应用人类肝脏微生理学系统制定非酒精性脂肪性肝病 (NAFLD) 的治疗策略
- 批准号:
9752312 - 财政年份:2018
- 资助金额:
$ 104.63万 - 项目类别:
Human Microphysiology Systems Disease Model of Type 2 Diabetes Starting with Liver and pancreatic Islets
从肝和胰岛开始的 2 型糖尿病的人体微生理学系统疾病模型
- 批准号:
10228791 - 财政年份:2018
- 资助金额:
$ 104.63万 - 项目类别:
Human Microphysiology Systems Disease Model of Type 2 Diabetes Starting with Liver and pancreatic Islets
从肝和胰岛开始的 2 型糖尿病的人体微生理学系统疾病模型
- 批准号:
10462531 - 财政年份:2018
- 资助金额:
$ 104.63万 - 项目类别:
Human Microphysiology Systems Disease Model of Type 2 Diabetes Starting with Liver and pancreatic Islets
从肝和胰岛开始的 2 型糖尿病的人体微生理学系统疾病模型
- 批准号:
10225651 - 财政年份:2018
- 资助金额:
$ 104.63万 - 项目类别:
Applying a Human Liver Microphysiology System to Develop Therapeutic Strategies for Non-Alcoholic Fatty Liver Disease (NAFLD)
应用人类肝脏微生理学系统制定非酒精性脂肪性肝病 (NAFLD) 的治疗策略
- 批准号:
9920137 - 财政年份:2018
- 资助金额:
$ 104.63万 - 项目类别:
Human Microphysiology Systems Disease Model of Type 2 Diabetes Starting with Liver and pancreatic Islets
从肝和胰岛开始的 2 型糖尿病的人体微生理学系统疾病模型
- 批准号:
9669312 - 财政年份:2018
- 资助金额:
$ 104.63万 - 项目类别:
InCell 6000 High Content Instrument for Cellular Systems Biology Program
InCell 6000 高内涵细胞系统生物学仪器
- 批准号:
8332956 - 财政年份:2013
- 资助金额:
$ 104.63万 - 项目类别:
A 3D biomimetic liver sinusoid construct for predicting physiology and toxicity
用于预测生理学和毒性的 3D 仿生肝正弦结构
- 批准号:
9104252 - 财政年份:2012
- 资助金额:
$ 104.63万 - 项目类别:
Collaborations to Extend the Microphysiology Database for Multiple Organ Models,
合作扩展多器官模型的微生理学数据库,
- 批准号:
8667080 - 财政年份:2012
- 资助金额:
$ 104.63万 - 项目类别:
相似国自然基金
上市公司所得税会计信息公开披露的经济后果研究——基于“会计利润与所得税费用调整过程”披露的检验
- 批准号:72372025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
- 批准号:72302197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332003
- 批准年份:2023
- 资助金额:166 万元
- 项目类别:重点项目
签字注册会计师动态配置问题研究:基于临阵换师视角
- 批准号:72362023
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
异常获利、捐赠与会计信息操纵:基于新冠疫情的准自然实验研究
- 批准号:72372061
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Morphologic and Kinematic Adaptations of the Subtalar Joint after Ankle Fusion Surgery in Patients with Varus-type Ankle Osteoarthritis
内翻型踝骨关节炎患者踝关节融合手术后距下关节的形态和运动学适应
- 批准号:
10725811 - 财政年份:2023
- 资助金额:
$ 104.63万 - 项目类别:
Delineating the functional impact of recurrent repeat expansions in ALS using integrative multiomic analysis
使用综合多组学分析描述 ALS 中反复重复扩增的功能影响
- 批准号:
10776994 - 财政年份:2023
- 资助金额:
$ 104.63万 - 项目类别:
FastPlex: A Fast Deep Learning Segmentation Method for Accurate Choroid Plexus Morphometry
FastPlex:一种用于精确脉络丛形态测量的快速深度学习分割方法
- 批准号:
10734956 - 财政年份:2023
- 资助金额:
$ 104.63万 - 项目类别:
Integration of advanced imaging and multiOMICs to elucidate pro-atherogenic effects of endothelial-to-Immune cell-like transition (EndICLT)
整合先进成像和多组学技术来阐明内皮细胞向免疫细胞样转变的促动脉粥样硬化效应 (EndICLT)
- 批准号:
10606258 - 财政年份:2023
- 资助金额:
$ 104.63万 - 项目类别: