Genotype-Phenotype Associations in Reading Disorders
阅读障碍中的基因型-表型关联
基本信息
- 批准号:9396406
- 负责人:
- 金额:$ 6.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAdoptionAffectAgeAlgorithmic AnalysisBehavioralBehavioral SymptomsBig DataBiologicalBiologyCharacteristicsChildComplexComprehensionDataData AnalysesData SetData SourcesDatabasesDemographic AccountingDevelopmentDiagnosisDyslexiaEarly InterventionEarly identificationEtiologyFactor AnalysisFailureFutureGeneral PopulationGenesGeneticGenetic MarkersGenetic Predisposition to DiseaseGenetic studyGenotypeGoalsHeritabilityHigh-Throughput Nucleotide SequencingInterdisciplinary StudyInterventionJointsLanguageLearningLinkLiteratureLongitudinal StudiesMachine LearningMental HealthMethodsModelingModernizationOutcomeParentsPathway AnalysisPathway interactionsPhenotypePopulation StudyPreventionPreventive measureReading DisorderReproducibilityResearchRiskRunningSchool-Age PopulationSchoolsServicesSocioeconomic StatusSpecial EducationTechniquesTestingTextTimeTwin StudiesUnderachievementUnderemploymentValidationbasebehavior measurementboysdata modelinggene discoverygene interactiongenetic approachgirlshigh riskimprovedpersonalized interventionphonological awarenesspopulation basedpredictive modelingpublic health relevancereading abilityreading difficultiessex
项目摘要
Project Summary/Abstract
Dyslexia and other language-based reading disorders (RD) account for nearly 85% of children receiving
special education services in the U.S. RD affect between 5% and 17% of school-age children with boys at
higher risk than girls. Children with RD are at high risk for academic failure and future underemployment. The
current diagnosis of RD relies on behavioral symptoms. This means that RD cannot be identified until after the
child has begun to learn to read. By this time, a potentially opportune window for intervention has been missed.
Early identification and prevention is possible by using genetic markers because RD have a high heritability
rate. The existing genetic studies about RD are limited in the sense that the gene-RD association was
evaluated on a one-gene-at-a-time basis. This approach is not efficient because hundreds of thousands of
genes need to be evaluated; nor is it effective because it runs a high risk of miss-detecting important genes
due to overly-strict multiple test corrections applied to too many genes. Also, the existing one-gene-at-a-time
approach only examines the marginal association of each gene with RD, without accounting for the joint effect
of multiple genes and their interaction in relation to RD. For a complex phenotype like RD, a multi-gene-
interactive mechanism is more plausible and has been supported by recent studies. Despite this, little research
has been done to discover the genes simultaneously and characterize their interactions. This is partially
because this field has not been able to take advantage of modern machine learning developments that provide
effective and efficient approaches for genetic big data modeling and analysis. Another limitation of the existing
studies is that they have been focused on single behavioral deficits and did not account for demographic
difference. The short-term goals for this proposed project are to identify the gene sets associated with RD, link
the gene sets to enriched functional biological pathways, characterize the gene-RD associations across the
behavioral deficits in multiple reading abilities and accounting for demographic differences, and validate the
findings using existing population-based datasets. These goals will be achieved using a combination of
advanced machine learning algorithms and pathway analyses that are applied to existing population-based RD
data sources. There are two specific aims: Aim 1 focuses on identification of significant genes and their
interactions in relation to RD using sparse machine learning models and pathway analysis; Aim 2 focuses on
validation for the models and findings in Aim 1 using the Avon Longitudinal Study of Parents and Children
(ALSPAC) dataset and another independent dataset. The long-term goal of this research is to contribute to the
development of personalized early identification methods and early intervention for children at risk of RD.
项目摘要/摘要
阅读障碍和其他基于语言的阅读障碍(RD)占接收儿童的近85%
美国RD的特殊教育服务影响5%至17%的男孩学龄儿童
风险高于女孩。 RD的儿童有学术失败和未来就业不足的高风险。这
RD的当前诊断依赖于行为症状。这意味着直到之后才能识别RD
孩子已经开始学习阅读。到这个时候,已经错过了一个潜在的有机干预窗口。
通过使用遗传标记,可以使用遗传标记,因为RD具有很高的遗传力,这是可能的
速度。关于RD的现有遗传研究是有限的,因为基因-RD关联是
以一次性的方式进行评估。这种方法不是有效的,因为成千上万
基因需要评估;这也不是有效的,因为它具有错过检测重要基因的高风险
由于过度分解的多个测试校正,应用于太多基因。另外,现有的一次性
方法仅检查每个基因与RD的边际关联,而无需考虑关节效应
多个基因及其相对于RD的相互作用。对于像RD这样的复杂表型,多基因 -
交互式机制更为合理,并得到了最近的研究支持。尽管如此,很少的研究
已经完成了同时发现基因并表征其相互作用的基因。这是部分
因为该领域无法利用现代机器学习发展的优势
遗传大数据建模和分析的有效和有效方法。现有的另一个限制
研究是,他们一直专注于单个行为缺陷,但没有考虑人口统计
不同之处。该拟议项目的短期目标是确定与RD相关的基因集
该基因设置为富集功能性生物学途径,表征了整个基因-RD的关联
多次阅读能力的行为缺陷以及人口统计学差异的核算,并验证
使用现有基于人群的数据集的发现。这些目标将通过结合
高级机器学习算法和途径分析应用于现有的基于人群的RD
数据源。有两个具体的目的:目标1专注于识别重要基因及其其
使用稀疏的机器学习模型和途径分析与RD相关的相互作用; AIM 2专注于
使用父母和孩子的Avon纵向研究对AIM 1中的模型和发现验证
(ALSPAC)数据集和另一个独立的数据集。这项研究的长期目标是为
开发个性化早期识别方法和针对RD风险的儿童的早期干预。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hope Sparks Lancaster其他文献
Hope Sparks Lancaster的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hope Sparks Lancaster', 18)}}的其他基金
Development of Online Tool for Speech-Language Research
言语研究在线工具的开发
- 批准号:
10836301 - 财政年份:2023
- 资助金额:
$ 6.01万 - 项目类别:
Development of Online Tool for Speech-Language Research
言语研究在线工具的开发
- 批准号:
10289323 - 财政年份:2020
- 资助金额:
$ 6.01万 - 项目类别:
Development of Online Tool for Speech-Language Research
言语研究在线工具的开发
- 批准号:
10400002 - 财政年份:2014
- 资助金额:
$ 6.01万 - 项目类别:
Development of Online Tool for Speech-Language Research
言语研究在线工具的开发
- 批准号:
10299594 - 财政年份:2014
- 资助金额:
$ 6.01万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
跨期决策中偏好反转的影响因素及作用机制:采用体验式实验范式的综合研究
- 批准号:72271190
- 批准年份:2022
- 资助金额:43 万元
- 项目类别:面上项目
农民合作社视角下组织支持、个人规范对农户化肥农药减量增效技术采用行为的影响机制研究
- 批准号:72103054
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用磁共振技术研究帕金森病蓝斑和黑质神经退变及其对大脑结构功能的影响
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Maximizing the reach of universal child sexual abuse prevention: An equivalence trial
最大限度地扩大普遍预防儿童性虐待的范围:等效试验
- 批准号:
10739900 - 财政年份:2023
- 资助金额:
$ 6.01万 - 项目类别:
Development and feasibility of a mind-body intervention to improve physical activity for patients with chronic hip pain
改善慢性髋部疼痛患者身体活动的身心干预措施的开发和可行性
- 批准号:
10591772 - 财政年份:2023
- 资助金额:
$ 6.01万 - 项目类别:
T1DTechCHW: Enhancing the Community Health Worker (CHW) Model to Promote Diabetes Technology Use in Young Adults from Underrepresented Minority Groups (YA-URMs) with Type 1 Diabetes (T1D)
T1DTechCHW:加强社区卫生工作者 (CHW) 模式,促进患有 1 型糖尿病 (T1D) 的弱势少数群体 (YA-URM) 年轻人使用糖尿病技术
- 批准号:
10417628 - 财政年份:2022
- 资助金额:
$ 6.01万 - 项目类别:
Preventing Peanut Allergy in Young Children: Identifying Barriers to Protocol Engagement and Adherence
预防幼儿花生过敏:识别协议参与和遵守的障碍
- 批准号:
10641769 - 财政年份:2022
- 资助金额:
$ 6.01万 - 项目类别:
Effect of Hearing Aid Insurance Coverage Requirements for Adults on Utilization
成人助听器保险覆盖范围要求对使用率的影响
- 批准号:
10444684 - 财政年份:2022
- 资助金额:
$ 6.01万 - 项目类别: