Multi-parametric anthropomorphic MRI Phantoms technology for reliable and reproducible structural and quantitative MRI
多参数拟人 MRI Phantoms 技术可实现可靠且可重复的结构和定量 MRI
基本信息
- 批准号:10729161
- 负责人:
- 金额:$ 61.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-08 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAccelerationAddressAirAnatomyBiologicalBrainChemicalsClinicClinicalCollaborationsColorCrosslinkerData ScienceDefectDevelopmentDiffusionEducational workshopEnsureEquipmentEvaluationExhibitsFatty acid glycerol estersFingerprintGelGeometryHeadHealthcareHeterogeneityHumanHydrogelsImageImaging PhantomsIndustrializationInternetLiquid substanceMachine LearningMagnetic Resonance ImagingMagnetismMapsMeasurementMeasuresMethodsModelingPaperPermeabilityPlasticsPredispositionPrintingProcessPropertyProtonsPublishingQuality ControlRecommendationRelaxationReproducibilityResolutionScanningShapesShoulderSignal TransductionSiteSliceSourceSpeedStandardizationStructureTechniquesTechnologyTestingThinnessTimeTissuesVariantViscosityWaterWorkbiomarker discoveryboneclinical translationdeep learningdensitydesigndigitaldigital twinfabricationhuman subjectimprovedmanufacturemanufacturing processmillimetermonomernovel strategiespersonalized diagnosticsprecision medicinereconstructionskillssoundthree dimensional structuretoolvalidation studies
项目摘要
Abstract
We aim to develop tools for ground-truth phantoms for quantitative and structural MRI (qMRI). qMRI aims to
acquire maps of physical or chemical variables that can be measured in physical units and compared between
tissue regions and among subjects. In contrast, most clinical MRI acquisitions are only qualitative, i.e. “weighted
images”, and not quantitative. While qMRI has the potential to improve precision diagnostics and medicine, it
has been traditionally hampered by significant barriers such as imaging speed, computational practicalities, and
reproducibility and repeatability of MR measurements. The variability between scanners and human subjects
and the lack of ground truth in biological tissues fundamentally challenge the development, testing and
standardization of qMRI techniques. The National Institute of Standards and Technology (NIST) hosted
workshops working towards standardizing qMRI. The resulting recommendation paper highlighted a list of
outstanding needs. The proposed project aims to address these unmet needs by developing materials,
technology, tools and processes for manufacturing quantitative anthropomorphic MRI phantoms. Current state-
of-the-art solutions for manufacturing MRI phantoms often use discrete compartments or geometrical shapes
filled with chemical solutions representing a single physical parameter. In contrast, our proposed novel approach
will enable fabrication of phantoms that truly mimic the contrast heterogeneity of tissue in 3D. These will include
proton density, T1, T2, T2* relaxation times, magnetic susceptibility, diffusion, fat fraction, air-tissue field-
inhomogeneity, relative conductivity, electric permittivity and magnetic permeability. If successful, this will be the
first time that such a comprehensive set of MRI parameters is accomplished in a tissue-mimicking phantom.
Based on our preliminary work on quantitative anatomy mimicking slice phantoms, we propose two approaches:
(a) Quantitative 3D stack of thin slices. This approach is inexpensive, easy to reproduce by labs with moderate
equipment and skills. (b) An advanced approach of boundaryless fully 3D phantoms that will be fabricated via
inkjet 3D printing of hydrogels and plastics and would enable true high resolution 3D structures with
heterogeneity that mimics human anatomy. In collaboration with leading industrial partners, we will validate and
disseminate our technology. Our proposal is motivated by a rising need for quantitative measurements in MRI
driven by precision medicine and the use of data science tools for biomarker discovery. With the rise of methods
such as fingerprinting, and accelerated reconstruction, quantitative MRI (qMRI) is closer to the clinics than ever.
The proposed quantitative MRI phantom will mimic the complexity of tissue structure and contrast mechanism
that are necessary to ensure the accuracy of qMRI. If successful, the project will greatly facilitate the development
and clinical translation of qMRI, making MRI accurate, precise, and quantitative – thus enabling precision
diagnostic and discoveries that will directly improve healthcare.
抽象的
我们的目标是开发用于定量和结构 MRI (qMRI) 的真实模型工具。
获取可以用物理单位测量并在之间进行比较的物理或化学变量图
相比之下,大多数临床 MRI 采集只是定性的,即。
虽然 qMRI 有潜力改善精确诊断和医学,但它
传统上一直受到成像速度、计算实用性等重大障碍的阻碍
MR 测量的再现性和可重复性。扫描仪和人类受试者之间的差异。
生物组织中缺乏基本事实从根本上挑战了开发、测试和
qMRI 技术的标准化由美国国家标准与技术研究所 (NIST) 主办。
致力于标准化 qMRI 的研讨会所产生的建议文件重点列出了以下内容。
拟议的项目旨在通过开发材料来解决这些未满足的需求,
用于制造定量拟人 MRI 模型的技术、工具和流程 当前状态。
用于制造 MRI 体模的最先进的解决方案通常使用离散的隔间或几何形状
相比之下,我们提出的新方法充满了代表单一物理参数的化学溶液。
将能够制造真正模仿 3D 组织对比度异质性的模型。
质子密度、T1、T2、T2* 弛豫时间、磁化率、扩散、脂肪分数、空气组织场-
如果成功,这将是不均匀性、相对电导率、介电常数和磁导率。
首次在模仿组织的模型中完成如此全面的 MRI 参数设置。
基于我们对模拟切片模型的定量解剖学的初步工作,我们提出了两种方法:
(a) 定量 3D 切片堆叠 这种方法成本低廉,易于由中等水平的实验室重现。
(b) 一种先进的无边界全 3D 模型制造方法。
水凝胶和塑料的喷墨 3D 打印,将实现真正的高分辨率 3D 结构
我们将与领先的工业合作伙伴合作,验证和模仿人体解剖学的异质性。
传播我们的技术是由于对 MRI 定量测量的需求不断增长。
随着精准医学和使用数据科学工具发现生物标志物的方法的兴起,推动了这一趋势。
例如指纹识别和加速重建,定量 MRI (qMRI) 比以往任何时候都更接近临床。
所提出的定量 MRI 模型将模拟组织结构和对比机制的复杂性
如果成功,该项目将极大地促进其发展。
qMRI 的临床转化,使 MRI 准确、精确和定量 – 从而实现精确性
将直接改善医疗保健的诊断和发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ana Claudia Arias其他文献
Ana Claudia Arias的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ana Claudia Arias', 18)}}的其他基金
High-Sensitivity Flexible MRI Coils via Printed Electronics
通过印刷电子技术实现高灵敏度柔性 MRI 线圈
- 批准号:
8633036 - 财政年份:2013
- 资助金额:
$ 61.04万 - 项目类别:
High-Sensitivity Flexible MRI Coils via Printed Electronics
通过印刷电子技术实现高灵敏度柔性 MRI 线圈
- 批准号:
8512499 - 财政年份:2013
- 资助金额:
$ 61.04万 - 项目类别:
相似国自然基金
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
- 批准号:52378167
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高面能量密度全3D打印微型锌离子混合电容器的构筑与储能机理研究
- 批准号:22309176
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
3D打印-前端聚合反应耦合新方法构筑凝胶支架材料及其应用基础研究
- 批准号:22378202
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
分层悬浮3D打印工程化类弹性蛋白用于组织工程肺脏的构建研究
- 批准号:32301209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D打印多孔钛合金诱导瘢痕组织膜内巨噬细胞分泌TNFα+/TGFβ1+/BMP2+组织液促进大段骨缺损修复
- 批准号:82302684
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
3D Bioprinted Human Model of Duchenne Muscular Dystrophy (DMD) Cardiomyopathy to Study Disease Progression with Imposed Force and Precise Gene Editing
杜氏肌营养不良症 (DMD) 心肌病的 3D 生物打印人体模型,通过施加力和精确的基因编辑来研究疾病进展
- 批准号:
10628962 - 财政年份:2023
- 资助金额:
$ 61.04万 - 项目类别:
Computational model-driven design to mitigate vein graft failure after coronary artery bypass
计算模型驱动的设计可减轻冠状动脉搭桥术后静脉移植失败的风险
- 批准号:
10683327 - 财政年份:2022
- 资助金额:
$ 61.04万 - 项目类别:
Clinically Applicable Orofacial Cleft Reconstruction Using Structural, Compositional Biomimetic Bone Scaffolds
使用结构、组合仿生骨支架进行临床适用的口面裂重建
- 批准号:
10671681 - 财政年份:2022
- 资助金额:
$ 61.04万 - 项目类别:
Program on Occupational Health and Safety Education on Emerging Technologies - Mid Atlantic Partnership (POccET MAP)
新兴技术职业健康与安全教育计划 - 中大西洋伙伴关系 (POccET MAP)
- 批准号:
10683360 - 财政年份:2021
- 资助金额:
$ 61.04万 - 项目类别:
Development of 4D Flow MRI for Risk Stratification of Variceal Bleeding in Cirrhosis
开发 4D Flow MRI 用于肝硬化静脉曲张出血风险分层
- 批准号:
10211545 - 财政年份:2021
- 资助金额:
$ 61.04万 - 项目类别: