Multi-parametric anthropomorphic MRI Phantoms technology for reliable and reproducible structural and quantitative MRI
多参数拟人 MRI Phantoms 技术可实现可靠且可重复的结构和定量 MRI
基本信息
- 批准号:10729161
- 负责人:
- 金额:$ 61.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-08 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAccelerationAddressAirAnatomyBiologicalBrainChemicalsClinicClinicalCollaborationsColorCrosslinkerData ScienceDefectDevelopmentDiffusionEducational workshopEnsureEquipmentEvaluationExhibitsFatty acid glycerol estersFingerprintGelGeometryHeadHealthcareHeterogeneityHumanHydrogelsImageImaging PhantomsIndustrializationInternetLiquid substanceMachine LearningMagnetic Resonance ImagingMagnetismMapsMeasurementMeasuresMethodsModelingPaperPermeabilityPlasticsPredispositionPrintingProcessPropertyProtonsPublishingQuality ControlRecommendationRelaxationReproducibilityResolutionScanningShapesShoulderSignal TransductionSiteSliceSourceSpeedStandardizationStructureTechniquesTechnologyTestingThinnessTimeTissuesVariantViscosityWaterWorkbiomarker discoveryboneclinical translationdeep learningdensitydesigndigitaldigital twinfabricationhuman subjectimprovedmanufacturemanufacturing processmillimetermonomernovel strategiespersonalized diagnosticsprecision medicinereconstructionskillssoundthree dimensional structuretoolvalidation studies
项目摘要
Abstract
We aim to develop tools for ground-truth phantoms for quantitative and structural MRI (qMRI). qMRI aims to
acquire maps of physical or chemical variables that can be measured in physical units and compared between
tissue regions and among subjects. In contrast, most clinical MRI acquisitions are only qualitative, i.e. “weighted
images”, and not quantitative. While qMRI has the potential to improve precision diagnostics and medicine, it
has been traditionally hampered by significant barriers such as imaging speed, computational practicalities, and
reproducibility and repeatability of MR measurements. The variability between scanners and human subjects
and the lack of ground truth in biological tissues fundamentally challenge the development, testing and
standardization of qMRI techniques. The National Institute of Standards and Technology (NIST) hosted
workshops working towards standardizing qMRI. The resulting recommendation paper highlighted a list of
outstanding needs. The proposed project aims to address these unmet needs by developing materials,
technology, tools and processes for manufacturing quantitative anthropomorphic MRI phantoms. Current state-
of-the-art solutions for manufacturing MRI phantoms often use discrete compartments or geometrical shapes
filled with chemical solutions representing a single physical parameter. In contrast, our proposed novel approach
will enable fabrication of phantoms that truly mimic the contrast heterogeneity of tissue in 3D. These will include
proton density, T1, T2, T2* relaxation times, magnetic susceptibility, diffusion, fat fraction, air-tissue field-
inhomogeneity, relative conductivity, electric permittivity and magnetic permeability. If successful, this will be the
first time that such a comprehensive set of MRI parameters is accomplished in a tissue-mimicking phantom.
Based on our preliminary work on quantitative anatomy mimicking slice phantoms, we propose two approaches:
(a) Quantitative 3D stack of thin slices. This approach is inexpensive, easy to reproduce by labs with moderate
equipment and skills. (b) An advanced approach of boundaryless fully 3D phantoms that will be fabricated via
inkjet 3D printing of hydrogels and plastics and would enable true high resolution 3D structures with
heterogeneity that mimics human anatomy. In collaboration with leading industrial partners, we will validate and
disseminate our technology. Our proposal is motivated by a rising need for quantitative measurements in MRI
driven by precision medicine and the use of data science tools for biomarker discovery. With the rise of methods
such as fingerprinting, and accelerated reconstruction, quantitative MRI (qMRI) is closer to the clinics than ever.
The proposed quantitative MRI phantom will mimic the complexity of tissue structure and contrast mechanism
that are necessary to ensure the accuracy of qMRI. If successful, the project will greatly facilitate the development
and clinical translation of qMRI, making MRI accurate, precise, and quantitative – thus enabling precision
diagnostic and discoveries that will directly improve healthcare.
抽象的
我们旨在开发用于定量和结构MRI(QMRI)的基础真相幻象的工具。 QMRI的目标是
获取可以在物理单位中测量并进行比较的物理或化学变量的地图
组织区域以及受试者之间。相反,大多数临床MRI获取仅是定性的,即“加权
图像”,而不是定量。尽管QMRI有可能改善精度诊断和医学
传统上,诸如成像速度,计算实践和
MR测量的可重复性和可重复性。扫描仪和人类受试者之间的变异性
并且在生物组织中缺乏地面真理从根本上挑战了发展,测试和
QMRI技术的标准化。国家标准技术研究所(NIST)主持
旨在标准化QMRI的研讨会。由此产生的推荐论文突出了一份清单
出色的需求。拟议的项目旨在通过开发材料来满足这些未满足的需求,
制造定量拟人化MRI幻象的技术,工具和过程。当前状态 -
制造MRI幻象的ART解决方案通常使用离散隔室或几何形状
充满了代表单个物理参数的化学溶液。相比之下,我们提出的新方法
将实现真正模仿3D组织的对比异质性的幻象。这些将包括
质子密度,T1,T2,T2*松弛时间,磁敏感性,扩散,脂肪分数,空气组织场 -
不均匀性,相对电导率,电介电常数和磁渗透性。如果成功,这将是
首次在模拟组织的幻影中完成了如此全面的MRI参数。
根据我们关于模仿切片幻影的定量解剖学的初步工作,我们提出了两种方法:
(a)定量3D薄片。这种方法是廉价的,易于通过现代实验室繁殖
设备和技能。 (b)无边界完全3D幻影的先进方法,该方法将通过
喷墨3D打印水凝胶和塑料,将使真正的高分辨率3D结构与
模仿人体解剖结构的异质性。与领先的工业合作伙伴合作,我们将验证和
传播我们的技术。我们的建议是由于对MRI进行定量测量的需求不断增加的动机
由精确医学和使用数据科学工具用于生物标志物发现的驱动。随着方法的兴起
例如指纹和加速重建,定量MRI(QMRI)比以往任何时候都更接近诊所。
拟议的定量MRI幻影将模仿组织结构的复杂性和对比机制
确保QMRI的准确性是必要的。如果成功,该项目将极大地支持开发
QMRI的临床翻译,使MRI准确,精确和定量 - 从而实现精度
诊断和发现将直接改善医疗保健。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ana Claudia Arias其他文献
Ana Claudia Arias的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ana Claudia Arias', 18)}}的其他基金
High-Sensitivity Flexible MRI Coils via Printed Electronics
通过印刷电子技术实现高灵敏度柔性 MRI 线圈
- 批准号:
8633036 - 财政年份:2013
- 资助金额:
$ 61.04万 - 项目类别:
High-Sensitivity Flexible MRI Coils via Printed Electronics
通过印刷电子技术实现高灵敏度柔性 MRI 线圈
- 批准号:
8512499 - 财政年份:2013
- 资助金额:
$ 61.04万 - 项目类别:
相似国自然基金
面向3D打印平行机的精确调度算法与动态调整机制研究
- 批准号:72301196
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
适于3D打印的肌球蛋白微凝胶Pickering乳液富脂鱼糜的稳定机制
- 批准号:32360595
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
- 批准号:32371472
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3D打印功能化仿生神经纤维修复脊髓损伤的作用及机制研究
- 批准号:82301560
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
3D Bioprinted Human Model of Duchenne Muscular Dystrophy (DMD) Cardiomyopathy to Study Disease Progression with Imposed Force and Precise Gene Editing
杜氏肌营养不良症 (DMD) 心肌病的 3D 生物打印人体模型,通过施加力和精确的基因编辑来研究疾病进展
- 批准号:
10628962 - 财政年份:2023
- 资助金额:
$ 61.04万 - 项目类别:
Computational model-driven design to mitigate vein graft failure after coronary artery bypass
计算模型驱动的设计可减轻冠状动脉搭桥术后静脉移植失败的风险
- 批准号:
10683327 - 财政年份:2022
- 资助金额:
$ 61.04万 - 项目类别:
Clinically Applicable Orofacial Cleft Reconstruction Using Structural, Compositional Biomimetic Bone Scaffolds
使用结构、组合仿生骨支架进行临床适用的口面裂重建
- 批准号:
10671681 - 财政年份:2022
- 资助金额:
$ 61.04万 - 项目类别:
Program on Occupational Health and Safety Education on Emerging Technologies - Mid Atlantic Partnership (POccET MAP)
新兴技术职业健康与安全教育计划 - 中大西洋伙伴关系 (POccET MAP)
- 批准号:
10683360 - 财政年份:2021
- 资助金额:
$ 61.04万 - 项目类别:
Development of 4D Flow MRI for Risk Stratification of Variceal Bleeding in Cirrhosis
开发 4D Flow MRI 用于肝硬化静脉曲张出血风险分层
- 批准号:
10211545 - 财政年份:2021
- 资助金额:
$ 61.04万 - 项目类别: