Clinically Applicable Orofacial Cleft Reconstruction Using Structural, Compositional Biomimetic Bone Scaffolds
使用结构、组合仿生骨支架进行临床适用的口面裂重建
基本信息
- 批准号:10671681
- 负责人:
- 金额:$ 60.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAccelerationAffectAlveolusAnatomyAnimal ModelArchitectureAutologousBiomimeticsBone MatrixBone Morphogenetic ProteinsBone RegenerationBone TissueBone TransplantationCellsCharacteristicsChildCleft LipCleft PalateClinicalComplexCongenital AbnormalityCongenital DisordersDefectDevelopmentEnvironmentExtracellular MatrixFaceGrowthGrowth and Development functionHumanImaging TechniquesImmune responseImpairmentImplantIn SituIn VitroInvestigationLip structureLive BirthMaxillaMedical ImagingMethodologyMineralsModelingMonitorMorbidity - disease rateNasal cavityNear-infrared optical imagingOperative Surgical ProceduresOralOral cavityOryctolagus cuniculusOsteogenesisOutcomePatientsPhysiologic calcificationProductionPropertyRespiratory physiologyRunningSeriesShapesSiteSoft PalateStructureSystemTechnologyTestingTherapeuticTimeTissue EngineeringTissue GraftsTissue constructsTissuesValidationWorkalveolar cleftbioprintingbonebone lossbone scaffoldclinical applicationclinical practiceclinically relevantcopolymercraniofacialdemineralizationdesigneffective therapyfluorescence imagingfluorophoreimaging platformimprovedin vivoin vivo monitoringinterestmineralizationnon-invasive monitornovelnovel strategiesorofacial cleftosteogenicpeptidomimeticspsychosocialreal time monitoringreconstructionrecruitrepairedscaffoldself esteemskeletalstandard carestem cellssuccesstissue reconstructiontissue regenerationtricalcium phosphate
项目摘要
PROJECT SUMMARY/ABSTRACT
Orofacial clefts are one of the most prevalent craniofacial birth defects in humans, which are characterized by
incomplete formation of oral and facial structures that separate the nasal and oral cavities. These congenital
disorders, if not successfully managed with a series of surgical interventions on lips, alveolus, hard/soft palates,
may lead to critical abnormalities of children’s growth development of the maxillary and the midface, insufficient
speaking, impaired respiratory function, and psychosocial problems such as low self-esteem. In current clinical
practice, the gold standard treatment for hard tissue reconstruction such as cleft palate with alveolar cleft is most
commonly involved with autologous bone graft; however, autologous tissue grafts are limited in availability,
require additional invasive surgery, and have donor site morbidity. More critically, the major shortcomings of the
autologous bone grafts include significant bone loss after grafting and their unpredictable success rate. In this
proposed project, our central hypothesis is that structurally, compositionally biomimetic bone scaffolds without
cell seeding could utilize host stem/progenitor cells for in situ orofacial cleft reconstruction. Thus, the objective
is to investigate the clinical feasibility of this novel bone scaffolding system using a clinically relevant animal
model for orofacial cleft reconstruction. To achieve this, we will utilize 3D bioprinting technology to fabricate a
personalized bone scaffold with clinically relevant size, shape, and structural integrity. In addition, we will utilize
a noninvasive real-time near-infrared (NIR) fluorescence imaging platform to monitor mineralization for bone
regeneration along with scaffold degradation. We also hypothesize that this NIR imaging platform can provide a
comprehensive understanding of the relationship between scaffold degradation and in situ bone regeneration.
The central hypothesis will be tested by pursuing three Specific Aims: 1) Develop and characterize
compositionally biomimetic bone scaffolds for in situ orofacial cleft reconstruction; 2) Develop a novel
noninvasive monitoring system using NIR-functionalized bone scaffolds; 3) Validate 3D bioprinted
biofunctionalized bone scaffolds in a clinically applicable rabbit orofacial cleft defect model. Upon conclusion, we
will develop a clinically relevant 3D bioprinting workflow that can be utilized for orofacial cleft reconstruction. With
our successful completion of this project, we will apply this novel approach toward the creation of personalized
bone grafts as an effective treatment for orofacial clefts in children.
项目摘要/摘要
口面裂口是人类中最普遍的颅面出生缺陷之一,其特征是
分离鼻和口腔的口服和面部结构的不完整形成。这些先天性
疾病,即使没有成功地通过嘴唇,肺泡,硬/柔软的嘴唇上的一系列手术干预进行管理,
可能导致儿童上颌和中间的成长发展的严重异常,不足
语言,呼吸功能受损和社会心理问题,例如自尊心低。在当前的临床上
练习,硬组织重建的金标准处理,例如肺泡裂口的left裂。
通常与自体骨移植有关;但是,自动组织移植物的可用性有限,
需要其他侵入性手术,并具有供体部位发病率。更重要的是,
自体骨移植物包括嫁接后明显的骨质流失和无法预测的成功率。在这个
拟议的项目,我们的中心假设是,在结构上,合成的仿生骨支架,没有
细胞播种可以利用宿主的茎/祖细胞进行原位的口面裂解重建。那,目标
是为了研究这种新型骨支架系统的临床可行性,使用临床上的动物
口面裂重建的模型。为了实现这一目标,我们将利用3D生物打印技术来制造
具有临床相关的大小,形状和结构完整性的个性化骨支架。此外,我们将使用
一个无创的实时近红外(NIR)荧光成像平台,以监测骨骼的矿化
再生以及脚手架退化。我们还假设这个NIR成像平台可以提供
对支架退化与原位骨再生之间关系的全面了解。
中心假设将通过追求三个具体目标来检验:1)发展和表征
构图仿生的骨支架,用于原位口面裂的重建; 2)发展小说
使用NIR官能化的骨支架的非侵入性监测系统; 3)验证3D生物打印
在临床上适用的兔子口腔裂口缺陷模型中的生物功能化骨支架。总结一下,我们
将开发一个与临床相关的3D生物打印工作流,该工作流可以用于口面裂解重建。和
我们成功完成了该项目,我们将采用这种新颖的方法来创建个性化
骨移植是儿童口腔裂缝的有效治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sang Jin Lee其他文献
Sang Jin Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
面向3D打印平行机的精确调度算法与动态调整机制研究
- 批准号:72301196
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
适于3D打印的肌球蛋白微凝胶Pickering乳液富脂鱼糜的稳定机制
- 批准号:32360595
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
- 批准号:32371472
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3D打印功能化仿生神经纤维修复脊髓损伤的作用及机制研究
- 批准号:82301560
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
3D Bioprinted Human Model of Duchenne Muscular Dystrophy (DMD) Cardiomyopathy to Study Disease Progression with Imposed Force and Precise Gene Editing
杜氏肌营养不良症 (DMD) 心肌病的 3D 生物打印人体模型,通过施加力和精确的基因编辑来研究疾病进展
- 批准号:
10628962 - 财政年份:2023
- 资助金额:
$ 60.92万 - 项目类别:
Multi-parametric anthropomorphic MRI Phantoms technology for reliable and reproducible structural and quantitative MRI
多参数拟人 MRI Phantoms 技术可实现可靠且可重复的结构和定量 MRI
- 批准号:
10729161 - 财政年份:2023
- 资助金额:
$ 60.92万 - 项目类别:
Computational model-driven design to mitigate vein graft failure after coronary artery bypass
计算模型驱动的设计可减轻冠状动脉搭桥术后静脉移植失败的风险
- 批准号:
10683327 - 财政年份:2022
- 资助金额:
$ 60.92万 - 项目类别:
Program on Occupational Health and Safety Education on Emerging Technologies - Mid Atlantic Partnership (POccET MAP)
新兴技术职业健康与安全教育计划 - 中大西洋伙伴关系 (POccET MAP)
- 批准号:
10683360 - 财政年份:2021
- 资助金额:
$ 60.92万 - 项目类别:
Development of 4D Flow MRI for Risk Stratification of Variceal Bleeding in Cirrhosis
开发 4D Flow MRI 用于肝硬化静脉曲张出血风险分层
- 批准号:
10538641 - 财政年份:2021
- 资助金额:
$ 60.92万 - 项目类别: