Machine Learning-Based Identification of Cardiomyopathy Risk in Childhood Cancer Survivors
基于机器学习的儿童癌症幸存者心肌病风险识别
基本信息
- 批准号:10730177
- 负责人:
- 金额:$ 22.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAdultAgeAnthracyclineArchitectureArtificial IntelligenceBiomedical EngineeringCalibrationCancer PatientCancer SurvivorCardiacCardiologyCardiomyopathiesCardiotoxicityChemotherapy and/or radiationChestChildClinicalCommunity Clinical Oncology ProgramComputersConsensusDataData SetDependenceDetectionDevelopmentDiagnosisDisease OutcomeEarly DiagnosisEarly InterventionEchocardiographyEquilibriumExposure toFunctional disorderGeneral PopulationGeometryGuidelinesHeartHeart DiseasesHeart failureImageIndividualInterdisciplinary StudyInternationalInterobserver VariabilityIonizing radiationLeftLeft Ventricular DysfunctionLeft Ventricular Ejection FractionLong-Term SurvivorsMachine LearningMalignant Childhood NeoplasmMeasurementMeasuresMedical ImagingMedicineMethodsMonitorMorbidity - disease rateNational Clinical Trials NetworkNetwork-basedOncologyOnset of illnessPatientsPatternPediatric Oncology GroupProcessRadiation therapyRecommendationResearchRiskSedation procedureShortening FractionStandardizationSurvivorsTestingTherapeuticTimeTrainingTreatment-Related CancerVentricularcancer imagingcardiac magnetic resonance imagingchildhood cancer survivorcohortconvolutional neural networkcostdeep learningdisease diagnosisefficacy evaluationheart functionhigh riskhigh risk populationimage archival systemimaging biomarkerimaging modalityimprovedimproved outcomeinsightinterestoutcome predictionprematureprogramsscreeningstandard of caretwo-dimensionalultrasoundunstructured data
项目摘要
PROJECT SUMMARY / ABSTRACT
Treatment-related cardiomyopathy/heart failure (CHF) is a leading cause of premature morbidity in childhood
cancer survivors. Given the widespread use of anthracycline and related cardiotoxic chemotherapeutics, and in
combination with radiotherapy exposure to the chest, over half of long-term survivors of childhood cancer are at
significantly increased risk of early CHF compared with an age-matched general population. Currently, national
and international consensus guidelines recommend the routine use of 2-dimensional (2D) echocardiography to
screen this high-risk population for early signs of CHF, in particular, left ventricular (LV) systolic dysfunction and
changes in LV geometry. At present, 2D echocardiography represents the standard of care across the US given
its widespread availability, relatively lower cost, and avoidance of ionizing radiation or sedation. Nevertheless,
limitations of 2D echocardiography include greater intra-patient and inter-observer variability. As a result, current
echocardiography-based surveillance continues to have limited sensitivity and often requires serial studies
before a patient is identified as having a potential abnormality. Although there is insufficient evidence to guide
CHF management specific to pediatric cancer survivors, the evidence for non-cancer-related cardiomyopathy in
both children and adults suggests that earlier intervention can mitigate or delay CHF progression. Therefore,
methods that improve the detection of early CHF in childhood cancer survivors may have important clinical
implications. Deep learning (DL), a subfield of machine learning, can automatically extract patterns from large
unstructured datasets, such as medical images, and is increasingly being utilized in medicine for disease
diagnosis as well as disease onset and outcome prediction. We propose to leverage a unique imaging dataset
we have assembled from the Children’s Oncology Group (COG), a part of the NCI-sponsored National Clinical
Trials Network and Community Oncology Research Program, to explore the potential of DL for enhanced
detection of CHF. We have longitudinal echocardiographic data on over 100 survivors of childhood cancer who
developed CHF and over 350 who did not, all defined using standardized criteria, representing an imaging
repository of >3000 individual echocardiograms (and growing). Using this extant and clinically annotated dataset,
we propose to: 1) Using a deep convolutional neural network (DCNN), identify the optimal process for a DL-
based assessment of CHF in pediatric cancer survivors; and 2) Assess the feasibility and preliminary efficacy of
DCNN-based prediction of cardiomyopathy onset from pre-CHF diagnosis echocardiograms. Expected results
include the development of a DCNN that will differentiate between abnormal and normal echocardiograms from
pediatric cancer survivors with and without CHF, respectively. After optimization, we will conduct a preliminary
efficacy analysis to determine how many years in advance a survivor's transition to CHF can be predicted using
an optimized DCNN.
项目摘要 /摘要
与治疗相关的心肌病/心力衰竭(CHF)是童年过早发病的主要原因
癌症存活。鉴于邻苯二酚和相关心脏毒性化学治疗剂的宽度使用
结合放射疗法暴露于胸部,超过一半的儿童癌症生存是
与年龄匹配的普通人群相比,早期CHF的风险显着增加。目前,国家
国际共识指南建议常规使用二维(2D)超声心动图
筛选此高风险人群的早期征兆,尤其是左心室(LV)收缩功能障碍和
LV几何形状的变化。目前,2d超声心动图代表了我们整个美国的护理标准
它的宽度可用性,相对较低的成本以及避免电离辐射或镇静。尽管如此,
2D超声心动图的局限性包括更大的患者内和观察者之间的变异性。结果,当前
基于超声心动图的监视继续具有有限的灵敏度,并且经常需要串行研究
在将患者确定为潜在异常之前。尽管没有足够的证据指导
CHF管理特定于儿科癌症生存,这是与非癌症相关心肌病的证据
儿童和成人都表明,早期的干预措施可以减轻或延迟CHF的进展。所以,
改善儿童癌症生存中早期CHF检测的方法可能具有重要的临床
含义。深度学习(DL)是机器学习的子场,可以自动从大型中提取图案
非结构化数据集,例如医学图像,并且越来越多地用于医学中的疾病
诊断以及疾病的发作和结果预测。我们建议利用独特的成像数据集
我们是从儿童肿瘤学小组(COG)组装的,这是NCI赞助的国家临床的一部分
试验网络和社区肿瘤研究计划,探索DL的潜力
检测CHF。我们有关于100多个儿童癌症生存的纵向超声心动图数据
开发了CHF和350多人没有使用标准化标准定义的,代表成像
> 3000个单独的超声心动图(以及增长)的存储库。使用此额外和临床注释的数据集,
我们建议:1)使用深度卷积神经网络(DCNN),确定DL-的最佳过程
基于小儿癌症存活中CHF的基于CHF的评估; 2)评估可行性和初步效率
CHF诊断前超声心动图的基于DCNN的心肌病发作的预测。预期结果
包括开发DCNN,该DCNN将区分异常和正常的超声心动图与
分别有和没有CHF的儿科癌症生存。优化后,我们将进行初步
有效性分析以确定可以使用冲浪者过渡到CHF的多年
优化的DCNN。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patrick M Boyle其他文献
Patrick M Boyle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patrick M Boyle', 18)}}的其他基金
Mechanistic Relationships Between Fibrosis, Fibrillation, and Stroke: Multi-Scale, Multi-Physics Simulations
纤维化、颤动和中风之间的机制关系:多尺度、多物理场模拟
- 批准号:
10441932 - 财政年份:2022
- 资助金额:
$ 22.75万 - 项目类别:
Mechanistic Relationships Between Fibrosis, Fibrillation, and Stroke: Multi-Scale, Multi-Physics Simulations
纤维化、颤动和中风之间的机制关系:多尺度、多物理场模拟
- 批准号:
10617841 - 财政年份:2022
- 资助金额:
$ 22.75万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 22.75万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 22.75万 - 项目类别:
Activity-dependent endocannabinoid control in epilepsy
癫痫的活动依赖性内源性大麻素控制
- 批准号:
10639147 - 财政年份:2023
- 资助金额:
$ 22.75万 - 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 22.75万 - 项目类别:
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 22.75万 - 项目类别: