Mechanistic Relationships Between Fibrosis, Fibrillation, and Stroke: Multi-Scale, Multi-Physics Simulations

纤维化、颤动和中风之间的机制关系:多尺度、多物理场模拟

基本信息

  • 批准号:
    10617841
  • 负责人:
  • 金额:
    $ 63.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-05 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

The main goals of this project are to identify mechanisms underlying thrombogenesis in patients with left atrial (LA) fibrosis and to validate this new knowledge via a prospective proof-of-concept clinical study. Atrial fibrillation (AFib) affects millions of Americans and carries a five-fold increased risk of stroke, a leading cause of mortality and morbidity. Around 30% of all ischemic strokes are caused by thromboembolism in AFib patients. In patients without AFib, embolic strokes of undetermined source (ESUS) account for an additional 30% of ischemic strokes. Current stroke risk stratification tools in AFib and ESUS (e.g., CHA2DS2-VASc) are deficient in predictive accuracy, leaving many patients either under-treated for stroke prevention or over- treated and subjected to unnecessary bleeding risk. The growing evidence that LA fibrosis serves as a mechanistic nexus between AFib and ESUS is a very promising advance that could open new avenues for stroke prevention. However, taking advantage of this opportunity requires detailed knowledge of the mechanism(s) by which fibrotic atria are prone to thrombosis, with or without AFib. Fibrosis has complex structural, electrical, and contractile effects in the LA. These phenomena may independently or synergistically influence thrombosis risk by altering LA hemodynamics, but prior work has not systematically assessed inter-dependencies or clarified each factor’s relative importance. This is due to difficulties associated with experimental manipulation and acquisition of clinical measurements. Advances in computational modeling offer an unprecedented opportunity to address this critical knowledge gap. Specifically, the stage is set to create a multi-scale, multi- physics framework that can comprehensively simulate the pro-thrombotic potential of each unique patient-specific LA fibrosis pattern. Our central hypothesis is that LA fibrosis is a key mechanistic factor in determining each individual’s risk of thromboembolic stroke due to structural, electrical, and contractile factors. Our approach consists of three specific aims. Aim 1 will develop and calibrate a computational framework that integrates electrophysiological, biomechanical, and mechano- fluidic modeling in patient-specific LA models, paying special attention to resolving the effects of fibrosis. We will parameterize the framework using multi-modality magnetic resonance imaging acquisitions in AFib patients with prior stroke and non-AFib, non-stroke controls. Aim 2 will use the new computational framework to systematically characterize mechanistic connections between LA fibrosis and thrombogenesis. We will examine how each individual’s mix of fibrosis extent/pattern, LA anatomy, and susceptibility to emergent electromechanical phenomena combine (with or without simulated AFib) to create a thrombogenic milieu that can be characterized by computational modeling. Aim 3 will validate the mechanistic connections between fibrosis and risk of recurrent stroke/brain microinfarction in a proof-of-concept prospective clinical study. We will examine a high-risk cohort of ESUS patients, but notably without a current indication for oral anticoagulation. We will test if model-predicted thrombogenic combinations of LA shape, fibrosis pattern, deranged electromechanics, and disrupted blood flow exist in patients who experience more adverse outcomes. Our validated multi-physics modeling framework will, for the first time, yield new insight on fibrosis-mediated stroke mechanisms, and pave the way for new treatments for millions of patients who are borderline candidates for anticoagulation (e.g., individuals with ESUS or AFib with intermediate risk scores).
该项目的主要目标是确定左心房(LA)纤维化患者的血栓形成的机制 并通过预期的概念验证临床研究来验证这一新知识。房颤(AFIB)影响数百万 美国人和中风的风险增加了五倍,这是死亡率和发病率的主要原因。大约30% 缺血性中风是AFIB患者的血栓栓塞引起的。在没有AFIB的患者中,未定的栓塞中风 来源(ESU)又占缺血性中风的30%。 AFIB和ESU中的当前中风风险分层工具(例如, CHA2DS2-VASC)缺乏预测准确性,许多患者因预防中风或过度治疗。 经过治疗并受到不必要的出血风险。越来越多的证据表明LA纤维化充当机械性联系 在AFIB和ESU之间是一个非常有前途的进步,可以为预防中风开放新的途径。但是,服用 这种机会的优势需要详细了解纤维化心房容易容易血栓形成的机制, 有或没有AFIB。纤维化在LA中具有复杂的结构,电和收缩效应。这些现象可能 通过改变LA血流动力学来独立或协同影响血栓形成风险,但先前的工作尚未系统地影响 评估相互依赖或阐明了每个因素的相对重要性。这是由于困难 实验性操纵和获取临床测量。计算建模的进步提供了 史无前例的机会解决这一关键知识差距。具体而言,阶段设置为创建一个多尺度的多尺度 物理框架可以全面模拟每个独特的患者特异性LA的促血栓性潜力 纤维化模式。我们的核心假设是,LA纤维化是确定每个人的风险的关键机制因素 由于结构,电气和收缩因子而引起的血栓栓塞中风。我们的方法包括三个特定目标。 AIM 1将开发和校准一个计算框架,该计算框架整合电生理,生物力学和机械框架 在患者特异性LA模型中的流体建模,特别注意解决纤维化的影响。我们将参数化 使用多模式磁共振成像采集的框架在AFIB患者和非AFIB的AFIB患者中, 非冲程控件。 AIM 2将使用新的计算框架系统地表征机械连接 在LA纤维化和血栓形成之间。我们将研究每个人的纤维化程度/模式,LA解剖结构如何 以及对新兴的机电现象的敏感性组合(有或没有模拟AFIB),以创建一个 可以通过计算建模来表征的血栓形成环境。 AIM 3将验证机械连接 在概念验证的前瞻性临床研究中,纤维化和复发性中风/脑微功能的风险之间。我们将 检查一群高风险的ESUS患者,但值得注意的是没有目前的口服抗凝药。我们将测试是否 LA形状,纤维化模式,机电干扰的模型预测的血栓形成组合 在经历更多不良后果的患者中存在流动。我们经过验证的多物理建模框架将对 第一次,对纤维化介导的中风机制产生新的见解,并为数百万的新疗法铺平了道路 是抗癌候选者的患者(例如,具有中等风险评分的ESU或AFIB患者)。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pulmonary vein flow split effects in patient-specific simulations of left atrial flow.
Cryoballoon temperature parameters during cryoballoon ablation predict pulmonary vein reconnection and atrial fibrillation recurrence.
冷冻球囊消融期间的冷冻球囊温度参数可预测肺静脉重新连接和心房颤动复发。
Epicardial adipose tissue is associated with left atrial volume and fibrosis in patients with atrial fibrillation.
Non-Newtonian blood rheology impacts left atrial stasis in patient-specific simulations.
  • DOI:
    10.1002/cnm.3597
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Gonzalo, Alejandro;Garcia-Villalba, Manuel;Rossini, Lorenzo;Duran, Eduardo;Vigneault, Davis;Martinez-Legazpi, Pablo;Flores, Oscar;Bermejo, Javier;McVeigh, Elliot;Kahn, Andrew M.;del Alamo, Juan C.
  • 通讯作者:
    del Alamo, Juan C.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Patrick M Boyle其他文献

Patrick M Boyle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Patrick M Boyle', 18)}}的其他基金

Machine Learning-Based Identification of Cardiomyopathy Risk in Childhood Cancer Survivors
基于机器学习的儿童癌症幸存者心肌病风险识别
  • 批准号:
    10730177
  • 财政年份:
    2023
  • 资助金额:
    $ 63.43万
  • 项目类别:
Mechanistic Relationships Between Fibrosis, Fibrillation, and Stroke: Multi-Scale, Multi-Physics Simulations
纤维化、颤动和中风之间的机制关系:多尺度、多物理场模拟
  • 批准号:
    10441932
  • 财政年份:
    2022
  • 资助金额:
    $ 63.43万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
  • 批准号:
    10752276
  • 财政年份:
    2024
  • 资助金额:
    $ 63.43万
  • 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 63.43万
  • 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
  • 批准号:
    10595404
  • 财政年份:
    2023
  • 资助金额:
    $ 63.43万
  • 项目类别:
Research Project 2
研究项目2
  • 批准号:
    10403256
  • 财政年份:
    2023
  • 资助金额:
    $ 63.43万
  • 项目类别:
Spatio-temporal mechanistic modeling of whole-cell tumor metabolism
全细胞肿瘤代谢的时空机制模型
  • 批准号:
    10645919
  • 财政年份:
    2023
  • 资助金额:
    $ 63.43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了