Project 2 Human Tumor Analysis
项目2 人类肿瘤分析
基本信息
- 批准号:10729467
- 负责人:
- 金额:$ 52.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-19 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:ArchitectureAwarenessBiological MarkersBiologyCancer EtiologyCancer PatientCell CommunicationCell modelCellsCessation of lifeClinicalClustered Regularly Interspaced Short Palindromic RepeatsComplexDataDisseminated Malignant NeoplasmDrug TargetingEcosystemEndothelial CellsEnvironmentEpitheliumExtracellular MatrixFormalinFreezingGenesGenetic TranscriptionGrowthHead and Neck Squamous Cell CarcinomaHeterogeneityHost Defense MechanismHumanImmuneImmune ToleranceImmune systemLinkLung AdenocarcinomaLymph Node InvolvementLymph Node TissueMalignant - descriptorMalignant NeoplasmsMapsMetastatic Neoplasm to Lymph NodesModelingMolecular AnalysisNeoplasm MetastasisOrganOrganoidsParaffin EmbeddingPatientsPatternPositive Lymph NodePrimary NeoplasmProcessPropertyProteomicsResearchRoleSamplingSentinel Lymph NodeSeriesSiteSolidSpecimenStromal CellsStromal NeoplasmSystems BiologyTechnologyTestingTimeTissuesTumor Biologybiocomputingcancer cellcell typecohorthuman modelhuman tissueimaging platformin situ imaginginsightlymph nodesmarkov modelmouse modelneoplastic cellnovelpre-clinicalsingle cell sequencingsingle-cell RNA sequencingspatial integrationspatiotemporaltemporal measurementtreatment strategytumortumor microenvironment
项目摘要
SUMMARY/ABSTRACT: PROJECT 2
Metastasis is the primary cause of cancer-related death. Our recent evidence establishes a new paradigm,
“lymph node tolerization,” in which the lymph node (LN) tissue environment creates a conditioned, systemic
metastatic state across tissues and organs. This proposal aims to identify and characterize unidentified
changes that create tolerize LNs, leading to the discovery of new biomarkers, drug targets, and treatment
strategies. Using a spatial systems biology approach that combines multiplexed in situ imaging with single-cell
RNA sequencing technologies, we will characterize tumor microenvironments across the host metastatic
ecosystem, in HNSCC and LUAD. We hypothesize that spatially resolved stromal-immune interactions in LNs
together with stromal-malignant properties in a primary tumor set the stage for metastasis. We will explore
mechanistic properties of these processes using organoid models of human-derived cells and mouse models.
In Aim 1, we will use using single-cell spatial proteomics to identify a pro-metastatic microenvironment in
uninvolved LNs of HNSCC and LUAD cancer patients by reconstructing and comparing spatially resolved
tumor-stroma-immune colocalization patterns of patient-derived uninvolved LNs, involved LNs, and primary
tumors. These analyses will compare cell types and cell-cell co-localization patterns in the tissue environments
of N0 and N+ patients. In addition, we will probe cell composition and colocalization patterns together with
extracellular matrix architecture to ascertain the role of ECM in establishing and maintaining the pro-metastatic
microenvironment in uninvolved LNs. In Aim 2, we will discover cell-cell interactions in uninvolved LNs that
predispose them to colonization by malignant cells by reconstructing and comparing cell-cell interactions
uninvolved LNs, involved LNs, and primary tumors inferred through integrative analysis of spatial information
with single-cell RNA-sequencing. We will develop novel biocomputational approaches to integrate spatial
features from CODEX with single cell RNA sequencing data to identify proximal cell-cell interactions among
tumor-stromal and stromal-immune cell types associated with LN metastases. We will then evaluate selected
cell-cell interactions in organoid models of human-derived cells, including perturbation with CRISPR-facilitated
gene editing to reveal mechanistic insights. In Aim 3, we will predict spatiotemporal progression in tumor-
stromal and stromal-immune colocalization patterns through spatially-aware Markov modeling and relate these
patterns to changes in human-derived LNs and primary tumors associated with metastatic progression. We will
build a spatially aware Markov model using spatially resolved time series data generated using tumor-stromal
and immune-stromal organoids generated from human-derived cells, to identify spatial motifs of tumor-stromal
and immune-stromal spatial patterning. This approach will illuminate spatiotemporal features of human LN
metastasis, toward defining mechanistic features of the metastatic cascade.
摘要/摘要:项目2
转移是与癌症相关死亡的主要原因。我们最近的证据建立了一个新的范式,
“淋巴结耐受化”,其中淋巴结(LN)组织环境会产生条件,全身性
跨组织和器官的转移状态。该建议旨在识别和表征未知的
会产生耐受性LN的变化,从而发现新的生物标志物,药物靶标和治疗
策略。使用空间系统生物学方法,该方法结合了原位成像与单细胞的多路复用
RNA测序技术,我们将表征整个宿主转移的肿瘤微环境
生态系统,HNSCC和LUAD。我们假设LNS中的空间分辨基质 - 免疫相互作用
在原发性肿瘤中,与基质 - 恶性特性一起构成了转移的阶段。我们将探索
这些过程的机械性能使用人类衍生细胞和小鼠模型的类器官模型。
在AIM 1中,我们将使用单细胞的空间蛋白质组学来识别促成中转移的微环境
通过重建和比较空间解决
患者衍生的未涉及LN的肿瘤 - 基质 - 免疫共定位模式,涉及LN和原发性
肿瘤。这些分析将比较组织环境中细胞类型和细胞细胞共定位模式
N0和N+患者的。此外,我们将探测细胞组成和共定位模式以及
细胞外基质体系结构,以确定ECM在建立和维持促生物中的作用
未参考的LNS中的微环境。在AIM 2中,我们将发现未参与LN的细胞细胞相互作用
通过重建和比较细胞 - 细胞相互作用,使它们易于恶性细胞定植
未参考的LN,涉及LN和通过空间信息的综合分析推断出的原发性肿瘤
带有单细胞RNA序列。我们将开发新型的生物计算方法来综合空间
与单细胞RNA测序数据的Codex的功能,以识别在
与LN转移相关的肿瘤 - 基质和基质 - 免疫细胞类型。然后我们将评估选定的
人类衍生细胞的器官模型中的细胞 - 细胞相互作用,包括扰动CRISPR-FAIRET的扰动
基因编辑以揭示机械见解。在AIM 3中,我们将预测肿瘤中的空间时间进展
通过空间意识的马尔可夫建模,基质和基质免疫共定位模式并将其相关
与转移性进展相关的人类衍生的LN和原发性肿瘤变化的模式。我们将
使用使用肿瘤 - 基质生成的空间分辨时间序列数据构建空间意识的马尔可夫模型
以及由人来源细胞产生的免疫巨细胞,以鉴定肿瘤 - 基质的空间基序
和免疫质的空间图案。这种方法将阐明人类LN的空间时间特征
转移,以定义转移级联的机械特征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SYLVIA KATINA PLEVRITIS其他文献
SYLVIA KATINA PLEVRITIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SYLVIA KATINA PLEVRITIS', 18)}}的其他基金
Biomedical Data Science Graduate Training at Stanford
斯坦福大学生物医学数据科学研究生培训
- 批准号:
9901621 - 财政年份:2016
- 资助金额:
$ 52.27万 - 项目类别:
COMPUTATIONAL ANALYSIS OF DIFFERENTIATION IN CANCER PROGRESSION
癌症进展分化的计算分析
- 批准号:
8181389 - 财政年份:2010
- 资助金额:
$ 52.27万 - 项目类别:
相似国自然基金
意识障碍康复的神经血管跨模态信息耦合预测-评估模型与自适应调控策略
- 批准号:62376190
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于神经功能影像技术研究腹侧基底核在丙泊酚诱导意识状态改变中的作用
- 批准号:82301443
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于丘脑-前额叶皮层环路的经耳迷走神经刺激对意识障碍的作用及机制研究
- 批准号:82302852
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
DAVTA-5-HTDRN神经环路调控丙泊酚全麻小鼠意识改变的作用机制研究
- 批准号:82360242
- 批准年份:2023
- 资助金额:31.5 万元
- 项目类别:地区科学基金项目
基于操控员情境意识状态可解释Agent的智能交互触发机制研究
- 批准号:62376220
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
CRCNS: Dense longitudinal neuroimaging to evaluate learning in childhood
CRCNS:密集纵向神经影像评估儿童学习情况
- 批准号:
10835136 - 财政年份:2023
- 资助金额:
$ 52.27万 - 项目类别:
Enabling the Assessment of Fetal Brain Development and Degeneration with Machine Learning
通过机器学习评估胎儿大脑发育和退化
- 批准号:
10659817 - 财政年份:2023
- 资助金额:
$ 52.27万 - 项目类别:
Genetic and neuroanatomical basis of neuropsychiatric symptoms in Alzheimer's disease in populations of diverse ancestry
不同血统人群中阿尔茨海默病神经精神症状的遗传和神经解剖学基础
- 批准号:
10567606 - 财政年份:2023
- 资助金额:
$ 52.27万 - 项目类别:
Computational analysis of tumor ecosystems and their regulation and association with outcomes
肿瘤生态系统及其调节及其与结果关联的计算分析
- 批准号:
10568399 - 财政年份:2023
- 资助金额:
$ 52.27万 - 项目类别:
AIM-AI: an Actionable, Integrated and Multiscale genetic map of Alzheimer's disease via deep learning
AIM-AI:通过深度学习绘制阿尔茨海默病的可操作、集成和多尺度遗传图谱
- 批准号:
10668829 - 财政年份:2023
- 资助金额:
$ 52.27万 - 项目类别: