Computational analysis of tumor ecosystems and their regulation and association with outcomes
肿瘤生态系统及其调节及其与结果关联的计算分析
基本信息
- 批准号:10568399
- 负责人:
- 金额:$ 62.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:ArchitectureAtlas of Cancer Mortality in the United StatesAwarenessBiological MarkersBiopsyCancer PatientCarcinomaCellsClinicalComputer AnalysisCustomDataData SetDisease ResistanceEcosystemEnvironmentExclusionFemaleFutureGene ExpressionGenesGenetic TranscriptionImageImmuneImmunotherapyInfiltrationInflammatoryKnowledgeLearningMalignant NeoplasmsMalignant neoplasm of ovaryMalignant neoplasm of urinary bladderMapsMeta-AnalysisMethodsMethylationModelingNon-Small-Cell Lung CarcinomaOutcomePatientsPhenotypePopulationProcessPrognosisRegulationRelapseResearch PersonnelResistanceSamplingSerousSex DifferencesSignal TransductionSolid CarcinomaStainsT-LymphocyteTestingThe Cancer Genome AtlasTissue MicroarrayTissuesTreatment outcomeWorkbiomarker identificationcancer typecell behaviorcell typecellular imagingcohortcomputer frameworkcytotoxicexhaustexperiencehuman tissuein vivo evaluationinnovationmalemelanomanew therapeutic targetpotential biomarkerprognosticprogramsresearch clinical testingresponsesexsingle-cell RNA sequencingsuccesssurvival outcometargeted cancer therapytherapeutic targettranscriptome sequencingtreatment responsetumor
项目摘要
Project Summary
The cellular makeup of tumors can radically influence response to treatment, and
survival outcomes. Biomarkers derived from tumor biopsies have had modest success in
their clinical utility for prognosis or guiding treatment decisions, being confounded by
factors such as cellular composition of tissues Moreover, different biomarkers may be
needed in female vs male patients. In prior work we showed how meta-analysis of large
clinically annotated public cancer datasets with clinical annotations can robustly identify
specific genes and processes associated with survival for patients in both pan-cancer and
cancer-specific ways. Here we still systematically investigate cancer-specific prognostic
cell types through integration of single cell RNA-seq (scRNAseq) with bulk RNA-seq and
methylation data. We will validate selected findings in tissue microarrays.
First, we will identify cancer-specific cell transcriptional states and ecosystems
associated with survival and treatment response, extending prior work that identified 10
different “ecotypes” of co-occurring cell states across carcinomas. Second, we will extend
our framework to isolate cancer-specific cell-type-specific methylation profiles and their
correlation with imputed gene expression across populations using paired bulk RNA-seq
and methylation from TCGA. Third, we will validate survival associations of cancer-
specific cell states by staining human tissue microarrays. We will focus on high grade
serous ovarian cancer (HGSOC), which has dire prognosis, and non small-cell lung
cancer (NSCLC) for which we have extensive information on immunotherapy response.
We will use CODEX imaging on large tissue sections to assess the spatial organization
of outcome-related cell states in NSCLC and HGSOC. Overall, we will comprehensively
map cancer-specific cell states and ecotypes across malignancies, identifying potential
biomarkers and possible new therapeutic targets.
项目摘要
肿瘤的细胞构成可以从根本上影响对治疗的反应,并且
生存结果。源自肿瘤活检的生物标志物在
他们用于预后或指导治疗决策的临床实用性
此外,组织的细胞组成等因素,可能是不同的生物标志物
在女性与男性患者中需要。在先前的工作中,我们展示了大型的荟萃分析
具有临床注释的临床注释的公共癌数据集可以牢固地识别
与患者的生存相关的特定基因和过程,泛滥和患者的生存率
特定于癌症的方式。在这里,我们仍系统地研究癌症特异性的预后
通过将单细胞RNA-seq(Scrnaseq)与散装RNA-Seq和
甲基化数据。我们将验证组织微阵列中选定的发现。
首先,我们将确定癌症特异性的细胞转录状态和生态系统
与生存和治疗反应相关,扩展了确定的先前工作10
跨癌的同时存在的细胞态的不同“生态型”。其次,我们将扩展
我们分离癌症特异性细胞型特异性甲基化谱及其框架
使用配对的大量RNA-Seq在种群中与估算的基因表达相关
和TCGA的甲基化。第三,我们将验证癌症的生存关联
特定的细胞态通过染色人体组织微阵列。我们将专注于高级
具有可怕预后的浆液卵巢癌(HGSOC)和非小细胞肺
癌症(NSCLC)我们为免疫疗法反应提供了广泛的信息。
我们将在大型组织部分上使用法典成像来评估空间组织
NSCLC和HGSOC中与结果相关的细胞态的。总体而言,我们将全面
跨恶性肿瘤的地图癌症特异性细胞状态和生态型,确定潜力
生物标志物和可能的新治疗靶标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew J. Gentles其他文献
Andrew J. Gentles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew J. Gentles', 18)}}的其他基金
Systems analysis of mechanisms driving response to immunotherapy in clear cell cancers
透明细胞癌免疫疗法驱动反应机制的系统分析
- 批准号:
10554766 - 财政年份:2022
- 资助金额:
$ 62.28万 - 项目类别:
Systems analysis of mechanisms driving response to immunotherapy in clear cell cancers
透明细胞癌免疫疗法驱动反应机制的系统分析
- 批准号:
10704140 - 财政年份:2022
- 资助金额:
$ 62.28万 - 项目类别:
The prognostic landscape of gender- and ethnicity-specific immune influences on cancer outcomes
性别和种族特异性免疫对癌症结果影响的预后情况
- 批准号:
9888350 - 财政年份:2019
- 资助金额:
$ 62.28万 - 项目类别:
相似海外基金
Impact of race and ethnicity on outcomes in patients with hormone receptor-positive breast cancer treated with CDK4/6 inhibitors
种族和民族对接受 CDK4/6 抑制剂治疗的激素受体阳性乳腺癌患者预后的影响
- 批准号:
10762267 - 财政年份:2023
- 资助金额:
$ 62.28万 - 项目类别:
Impact of race and ethnicity on outcomes in patients with hormone receptor-positive breast cancer treated with CDK4/6 inhibitors
种族和民族对接受 CDK4/6 抑制剂治疗的激素受体阳性乳腺癌患者预后的影响
- 批准号:
10762047 - 财政年份:2023
- 资助金额:
$ 62.28万 - 项目类别:
Immuno-Oncology Translation Network: Data Management and Resource-Sharing Center at RPCI
免疫肿瘤学翻译网络:RPCI 的数据管理和资源共享中心
- 批准号:
10175779 - 财政年份:2020
- 资助金额:
$ 62.28万 - 项目类别:
Bioinformatics of metastatic migration histories
转移迁移历史的生物信息学
- 批准号:
10159969 - 财政年份:2020
- 资助金额:
$ 62.28万 - 项目类别:
Bioinformatics of metastatic migration histories
转移迁移历史的生物信息学
- 批准号:
9981255 - 财政年份:2020
- 资助金额:
$ 62.28万 - 项目类别: