Systems analysis of mechanisms driving response to immunotherapy in clear cell cancers
透明细胞癌免疫疗法驱动反应机制的系统分析
基本信息
- 批准号:10554766
- 负责人:
- 金额:$ 53.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-13 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAntibodiesAppearanceArchitectureAutomobile DrivingBayesian learningBehaviorBiopsyCD8-Positive T-LymphocytesCancer PatientCarcinomaCell CommunicationCellsClear CellClear cell renal cell carcinomaClinicalClinical InvestigatorConventional (Clear Cell) Renal Cell CarcinomaDataDevelopmentDiseaseDissectionEnvironmentGene ExpressionGenetic TranscriptionGoalsHumanImageImmuneImmune checkpoint inhibitorImmunotherapyInterventionKidneyKnowledgeLearningMalignant - descriptorMalignant Epithelial CellMalignant NeoplasmsMalignant neoplasm of ovaryMethodsMicrosatellite InstabilityModelingMolecularMolecular AnalysisMorphologyMusOutcomeOvarianOvarian Clear Cell TumorOvarian Endometrioid AdenocarcinomaOvarian Serous AdenocarcinomaPatient SelectionPatientsPhenotypePropertyProteomicsSample SizeSignal TransductionStromal CellsSystems AnalysisSystems BiologyTP53 geneTestingTissue MicroarrayTransgenic ModelTranslationsTumor TissueValidationWorkbasecancer cellcancer typecell typecellular imagingcheckpoint therapycomputer frameworkdata resourceexperienceimaging platformimmunogenicimprovedindexinginnovationlearning strategymanmouse modelnovelnovel markerobjective response ratepembrolizumabpredicting responsepredictive markerpreservationrare cancerresponsesingle-cell RNA sequencingtranscriptome sequencingtreatment responsetumortumor behaviortumor microenvironmenttumor-immune system interactions
项目摘要
Clear cell ovarian cancer (ccOC) is a rare and lethal cancer with few treatment options. Based on molecular
analysis ccOC appears intrinsically immunogenic but with an immunosuppressive tumor microenvironment,
similar to other ovarian cancer types. However, ccOC is very distinct from high grade serous ovarian
carcinoma. Strikingly, it is similar in gene expression profiles to more frequent clear cell renal cell carcinomas
(ccRCC), suggesting that clear cell cancers share intrinsic mechanistic or microenvironment properties, not just
morphological appearance. Around 25% of ccRCC respond well to immune checkpoint inhibitors (ICIs), but
markers for predicting response are lacking. The objective response rate for monotherapy pembrolizumab in
one study was 33.3% for ccOC patients; but, in general, it is unknown which clear cell cancer patients could
benefit from ICI treatment. Recent work has shown that tumor behavior is driven not just by cellular
composition, but also by the spatial organization of different cell types including immune and stromal cells, as
well as malignant cells themselves. Knowledge of clear cell cancer tumor microenvironments and their spatial
architecture is lacking. Addressing this gap will improve our understanding of mechanisms of response to ICIs
in clear cell cancers, including rare ones like ccOC, and improve selection of patients for immunotherapy.
This study will use systems biology approaches to (i) elucidate and compare the cell types and their
transcriptional states present in ccOC and ccRCC; (ii) characterize the spatial architecture of these cells within
tumors using the CODEX (CODetection by indEXing) single cell proteomic imaging platform; and (iii) model
and validate cell-cell interactions in the spatial tumor microenvironment that drive clear cell cancer response to
immunotherapy through extensions of causal signaling inference algorithms to incorporate spatial context, and
to optimize experimental validations in mouse models that maximize the information gain about interaction
networks. Similar intrinsic and tumor microenvironmental features shared by ccOC and ccRCC, will nominate
common mechanisms of immunotherapy response, and identify the subset of both who might benefit from
treatment with ICIs. Successful development and application of these methods to clear cell cancers will
establish a framework that can be applied to other cancer types, notably to rare ones.
The expected outcome of this proposal is a comprehensive definition and dissection of the tumor
microenvironment of ccRCC and ccOC. It will identify common features and mechanisms between these clear
cell cancers, providing a basis to extend the approach to other classes of cancer, opening new avenues for
treatment, particularly in rare cancer types.
透明细胞卵巢癌(CCOC)是一种罕见的致命癌症,几乎没有治疗选择。基于分子
分析CCOC在本质上是免疫原性的,但具有免疫抑制性肿瘤微环境,
类似于其他卵巢癌类型。但是,CCOC与高级浆液卵巢非常不同
癌。引人注目的是,基因表达谱与更频繁的清晰细胞肾细胞癌相似
(CCRCC),表明透明细胞癌具有内在的机械或微环境特性,而不仅仅是
形态学外观。大约25%的CCRC对免疫检查点抑制剂(ICI)的反应良好,但
缺乏预测响应的标记。单一疗法pembrolizumab的客观响应率
CCOC患者的一项研究为33.3%。但是,总的来说,尚不清楚哪些明确的细胞癌患者可以
受益于ICI治疗。最近的工作表明,肿瘤行为不仅是由细胞驱动的
组成,也是由不同细胞类型的空间组织,包括免疫和基质细胞,作为
以及恶性细胞本身。了解透明细胞癌肿瘤微环境及其空间
缺乏建筑。解决这一差距将提高我们对ICIS反应机制的理解
在清晰的细胞癌中,包括罕见的CCOC,以及改善患者免疫疗法的选择。
这项研究将使用系统生物学方法来阐明和比较细胞类型及其
CCOC和CCRC中存在的转录状态; (ii)表征这些单元格的空间结构
使用法典(通过索引编码)单细胞蛋白质组学成像平台的肿瘤;和(iii)模型
并在空间肿瘤微环境中验证细胞 - 细胞相互作用,以驱动清晰的细胞癌对
通过因果信号传导推理算法扩展的免疫疗法,以融合空间环境和
在鼠标模型中优化实验验证,以最大程度地提高有关相互作用的信息
网络。 CCOC和CCRC共享的类似的内在和肿瘤微环境特征将提名
免疫疗法反应的常见机制,并确定两者可能从中受益的子集
ICIS治疗。这些方法的成功开发和应用清除细胞癌将
建立一个可以应用于其他癌症类型的框架,特别是稀有癌症类型。
该提案的预期结果是肿瘤的全面定义和解剖
CCRC和CCOC的微环境。它将确定这些清晰的特征和机制
细胞癌,提供了将方法扩展到其他类别癌症的基础,为
治疗,特别是在罕见的癌症类型中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew J. Gentles其他文献
Andrew J. Gentles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew J. Gentles', 18)}}的其他基金
Computational analysis of tumor ecosystems and their regulation and association with outcomes
肿瘤生态系统及其调节及其与结果关联的计算分析
- 批准号:
10568399 - 财政年份:2023
- 资助金额:
$ 53.91万 - 项目类别:
Systems analysis of mechanisms driving response to immunotherapy in clear cell cancers
透明细胞癌免疫疗法驱动反应机制的系统分析
- 批准号:
10704140 - 财政年份:2022
- 资助金额:
$ 53.91万 - 项目类别:
The prognostic landscape of gender- and ethnicity-specific immune influences on cancer outcomes
性别和种族特异性免疫对癌症结果影响的预后情况
- 批准号:
9888350 - 财政年份:2019
- 资助金额:
$ 53.91万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating the Protective Efficacy of SIV/HIV T and B cell Immunity Induced by RNA Replicons
研究 RNA 复制子诱导的 SIV/HIV T 和 B 细胞免疫的保护功效
- 批准号:
10673223 - 财政年份:2023
- 资助金额:
$ 53.91万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 53.91万 - 项目类别:
The immunogenicity and pathogenicity of HLA-DQ in solid organ transplantation
HLA-DQ在实体器官移植中的免疫原性和致病性
- 批准号:
10658665 - 财政年份:2023
- 资助金额:
$ 53.91万 - 项目类别:
Project 2: Mechanisms of Resistance to Neoantigen Vaccines in PDAC
项目2:PDAC新抗原疫苗耐药机制
- 批准号:
10708575 - 财政年份:2023
- 资助金额:
$ 53.91万 - 项目类别:
Diagnostic aptamer reagents to develop multi-analyte blood test for pre-clinical, mild and moderate Alzheimer's disease
诊断适体试剂用于开发针对临床前、轻度和中度阿尔茨海默病的多分析物血液检测
- 批准号:
10597840 - 财政年份:2023
- 资助金额:
$ 53.91万 - 项目类别: